-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsgc.py
367 lines (342 loc) · 16.2 KB
/
csgc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- coding: utf-8 -*-
"""csgc.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/10-72bciFo8Tk_f5GXrpjDrJIt8Sjy602
"""
# -*- coding: utf-8 -*-
import torch
import math
import numpy as np
import warnings
from itertools import permutations
from sklearn.utils.extmath import randomized_svd
from sklearn.cluster import KMeans
from scipy.optimize import fsolve
import psutil
def gen_adj_sbm(K,z,device="cpu"):
"""
INPUT
K = connection probability matrix (tensor)
z = labels (tensor)
OUTPUT
A: adjacency matrix (tensor)
P: probability matrix (tensor)
"""
K = K.to(device)
z = z.to(device)
k = K.shape[0]
n = len(z)
Z = torch.zeros((n,k)).to(device)
Z[range(n),z.long()-1] = 1
P = Z @ K @ Z.T
P.fill_diagonal_(0)
A = torch.bernoulli(torch.triu(P,diagonal=1))
A = (A+A.T).to(torch.uint8)
return A,P
def gen_adj_dcsbm(K,Theta,z,device="cpu"):
"""
INPUT
K = connection probability matrix (tensor)
Theta = degree parameter vector (tensor)
z = community labels (tensor)
OUTPUT
A: adjacency matrix (tensor)
P: probability matrix (tensor)
"""
K = K.to(device)
Theta = Theta.to(device)
z = z.to(device)
k = K.shape[0]
n = len(z)
Z = torch.zeros((n,k)).to(device)
Z[range(n),z.long()-1] = 1
P = torch.diag(Theta) @ Z @ K @ Z.T @ torch.diag(Theta)
P.fill_diagonal_(0)
A = torch.poisson(torch.triu(P,diagonal=1))
A = (A+A.T).to(torch.uint8)
return A,P
def sbm_mle(A,z,device="cpu"): # A,z as tensor
A = A.to(device)
z = z.to(device)
k = len(torch.unique(z))
n = len(z)
K = torch.tensor([[torch.sum(A[z==i,:][:,z==j]) / (torch.sum(z==i)*torch.sum(z==j))
for i in range(1,k+1)] for j in range(1,k+1)]).to(device)
diagK = torch.tensor([torch.sum(A[z==i,:][:,z==i]) / (torch.sum(z==i)*(torch.sum(z==i)-1))
if torch.sum(z==i)!=1 else 0 for i in range(1,k+1)]).to(device)
K[range(k),range(k)] = diagK
Z = torch.zeros((n,k)).to(device)
Z[range(n),z.long()-1] = 1
P = Z @ K @ Z.T
return K,P # K,P as tensor
def dcsbm_mle(A,z,device="cpu"): # A,z as tensor
A = A.to(device)
z = z.to("cpu")
k = len(torch.unique(z))
n = len(z)
ind = [(z==i).nonzero(as_tuple=True)[0] for i in range(1,k+1)]
K = torch.tensor([[torch.sum(A[z==i,:][:,z==j]) / (torch.sum(z==i)*torch.sum(z==j))
for i in range(1,k+1)] for j in range(1,k+1)]).to("cpu")
deg = torch.sum(A,dim=0)
Theta0 = torch.zeros(n).to(device)
for i in range(1,k+1):
if torch.sum(deg[z==i]==0):
Theta0[z==i] = 0
else:
Theta0[z==i] = deg[z==i]/torch.sum(deg[z==i])
Theta = np.zeros(n)
def f(x):
Thetasq_r = np.sum(np.square(x))
return (k_r-kappa_r*x)*(1-Thetasq_r) - x*m_rr*Thetasq_r+m_rr*np.square(x)
for r in range(1,k+1):
init = Theta0[z==r].to("cpu").numpy()
k_r = deg[z==r].to("cpu").numpy()
kappa_r = np.sum(k_r)
m_rr = np.diag(K)[r-1]
root = fsolve(f,init)
Theta[z==r] = root
K[r-1,r-1] = K[r-1,r-1]/(1-np.sum(np.square(root)))
Theta = torch.Tensor(Theta).to(device)
Z = torch.zeros((n,k)).to(device)
Z[range(n),z.long()-1] = 1
K = K.to(device)
P = torch.diag(Theta) @ Z @ K @ Z.T @ torch.diag(Theta)
P.fill_diagonal_(0)
return K,Theta,P # K,Theta,P as tensor
def spectral_sbm(A,k,device="cpu"): # A as tensor
A = A.to(device)
A = A+torch.mean(torch.sum(A.float(),1))/A.shape[0]
V = torch.tensor(randomized_svd(A.to("cpu").numpy(), n_components=k, random_state=None)[2])
labels = KMeans(n_clusters=k,n_init="auto").fit(V.T).labels_
return torch.tensor(labels+1).to(torch.uint8) # labels as tensor
def spectral_dcsbm(A,k,device="cpu"): # A as tensor
A = A.to(device)
A = A+torch.mean(torch.sum(A.float(),1))/A.shape[0]
V = torch.tensor(randomized_svd(A.to("cpu").numpy(), n_components=k, random_state=None)[2])
vr = torch.sqrt(torch.sum(torch.square(V.T),1))
reg_V = torch.diag(1/vr) @ V.T
labels = KMeans(n_clusters=k,n_init="auto").fit(reg_V).labels_
return torch.tensor(labels+1).to(torch.uint8) # labels as tensor
def csgc(tsA,tsP,var_structure="bernoulli",device="cpu"): # tsA,tsP as tensor
if device=="cpu":
if psutil.virtual_memory()[0]*0.7/(torch.numel(tsP)*4)/11 < 1:
raise ValueError("Matrix size too large!")
if device=="cuda:0":
if torch.cuda.get_device_properties(0).total_memory*0.7/(torch.numel(tsP)*4)/11 < 1:
raise ValueError("Matrix size too large!")
tsA = tsA.to(device)
tsP = tsP.to(device)
def csgc_V(Yh):
# Yh: Hadamard
Yh_2 = Yh*Yh
Yh_3 = Yh_2*Yh
Yh_4s = torch.sum(Yh_3*Yh,(-2,-1))
# Yh: matrix multiplication
Yh_2p = Yh @ Yh
Yh_3p = Yh_2p @ Yh
Yh_4p = Yh_3p @ Yh
Yhp_2_1s = torch.sum(Yh_2@Yh,(-2,-1))
Yhp_2_2 = Yh_2 @ Yh_2
Yhp_2_2s = torch.sum(Yhp_2_2,(-2,-1))
Yhp_2_2p = Yh_2 @ Yh_2p
Yhp_3_1s = torch.sum(Yh_3@Yh,(-2,-1))
# Yh: row sum
Yhr = torch.sum(Yh,dim=-1)
Yhrrs = torch.sum(torch.sum(Yh_2,dim=-1)*Yhr*Yhr,-1)
# Yh: diagonal
Yhd_3p = torch.diagonal(Yh_3p,dim1=-2,dim2=-1)
Yhd_3p_1s = torch.sum(torch.diag_embed(Yhd_3p)@Yh,(-2,-1))
# V for 10 subgraphs
V_twostar = torch.sum(torch.triu(Yh_2p,diagonal=1),(-2,-1))
V_triangle = torch.diagonal(Yh_3p,dim1=-2,dim2=-1).sum(-1)/6
V_fourcycle = (torch.diagonal(Yh_4p,dim1=-2,dim2=-1).sum(-1)-4*torch.sum(torch.triu(Yhp_2_2,diagonal=1),(-2,-1))-Yh_4s)/8
V_threepath = torch.sum(torch.triu(Yh_3p,diagonal=1),(-2,-1))+torch.sum(torch.triu(Yh_3,diagonal=1),(-2,-1))-Yhp_2_1s
V_threestar = (torch.sum(Yhr.pow(3),-1)-3*Yhp_2_1s+2*torch.sum(Yh_3,(-2,-1)))/6
V_triangleapp = (Yhd_3p_1s-2*torch.diagonal(Yh_2p@Yh_2,dim1=-2,dim2=-1).sum(-1))/2
V_twotriangle = (torch.sum(Yh_2p*Yh_2p*Yh,(-2,-1))-torch.diagonal(Yhp_2_2@Yh,dim1=-2,dim2=-1).sum(-1))/4
V_fivecycle = (torch.diagonal(Yh_4p@Yh,dim1=-2,dim2=-1).sum(-1)-5*torch.sum(torch.diag_embed(Yhd_3p)@Yh_2,(-2,-1))+ \
5*torch.diagonal(Yh_3@Yh_2p,dim1=-2,dim2=-1).sum(-1))/10
V_fourpath = (2*torch.sum(torch.triu(Yh_4p,diagonal=1),(-2,-1))-2*torch.sum(Yhp_2_2p,(-2,-1))+2*Yhp_3_1s+3*Yhp_2_2s+ \
3*torch.diagonal(Yhp_2_2p,dim1=-2,dim2=-1).sum(-1)-2*Yh_4s-Yhrrs-2*Yhd_3p_1s)/2
V_fourstar = (torch.sum(Yhr.pow(4),-1)-6*Yhrrs+3*Yhp_2_2s+8*Yhp_3_1s-6*Yh_4s)/24
V = torch.stack((V_twostar,V_triangle,V_fourcycle,V_threepath,V_threestar,
V_triangleapp,V_twotriangle,V_fivecycle,V_fourpath,V_fourstar)).t()
return V
def csgc_sd(vr):
# vr: Hadamard
vr_2 = vr*vr
vr_3 = vr_2*vr
vr_4s = torch.sum(vr_3*vr,(-2,-1))
# vr: matrix multiplication
vr_2p = vr @ vr
vr_3p = vr_2p @ vr
vr_4p = vr_3p @ vr
vrp_2_1s = torch.sum(vr_2@vr,(-2,-1))
vrp_2_2 = vr_2 @ vr_2
vrp_2_2s = torch.sum(vrp_2_2,(-2,-1))
vrp_2_2p = vr_2 @ vr_2p
vrp_3_1s = torch.sum(vr_3@vr,(-2,-1))
# vr: row sum
vrr = torch.sum(vr,dim=-1)
vrrrs = torch.sum(torch.sum(vr_2,dim=-1)*vrr*vrr,-1)
# vr: diagonal
vrd_3p = torch.diagonal(vr_3p,dim1=-2,dim2=-1)
vrd_3p_1s = torch.sum(torch.diag_embed(vrd_3p)@vr,(-2,-1))
# vr for 10 subgraphs
vr_twostar = torch.sum(torch.triu(vr_2p,diagonal=1),(-2,-1))
vr_triangle = torch.diagonal(vr_3p,dim1=-2,dim2=-1).sum(-1)/6
vr_fourcycle = (torch.diagonal(vr_4p,dim1=-2,dim2=-1).sum(-1)-4*torch.sum(torch.triu(vrp_2_2,diagonal=1),(-2,-1))-vr_4s)/8
vr_threepath = torch.sum(torch.triu(vr_3p,diagonal=1),(-2,-1))+torch.sum(torch.triu(vr_3,diagonal=1),(-2,-1))-vrp_2_1s
vr_threestar = (torch.sum(vrr.pow(3),-1)-3*vrp_2_1s+2*torch.sum(vr_3,(-2,-1)))/6
vr_triangleapp = (vrd_3p_1s-2*torch.diagonal(vr_2p@vr_2,dim1=-2,dim2=-1).sum(-1))/2
vr_twotriangle = (torch.sum(vr_2p*vr_2p*vr,(-2,-1))-torch.diagonal(vrp_2_2@vr,dim1=-2,dim2=-1).sum(-1))/4
vr_fivecycle = (torch.diagonal(vr_4p@vr,dim1=-2,dim2=-1).sum(-1)-5*torch.sum(torch.diag_embed(vrd_3p)@vr_2,(-2,-1))+ \
5*torch.diagonal(vr_3@vr_2p,dim1=-2,dim2=-1).sum(-1))/10
vr_fourpath = (2*torch.sum(torch.triu(vr_4p,diagonal=1),(-2,-1))-2*torch.sum(vrp_2_2p,(-2,-1))+2*vrp_3_1s+3*vrp_2_2s+ \
3*torch.diagonal(vrp_2_2p,dim1=-2,dim2=-1).sum(-1)-2*vr_4s-vrrrs-2*vrd_3p_1s)/2
vr_fourstar = (torch.sum(vrr.pow(4),-1)-6*vrrrs+3*vrp_2_2s+8*vrp_3_1s-6*vr_4s)/24
sd = torch.sqrt(torch.stack((vr_twostar,vr_triangle,vr_fourcycle,vr_threepath,vr_threestar,
vr_triangleapp,vr_twotriangle,vr_fivecycle,vr_fourpath,vr_fourstar)).t())
return sd
if var_structure == "bernoulli":
if torch.sum(torch.sum(tsA>1,(-2,-1))/(tsA.size(dim=-1)*tsA.size(dim=-2))>0.01)>0:
warnings.warn("Results may be inaccurate: too many multiedges and selfedges.")
tsA = tsA - torch.diag_embed(torch.diagonal(tsA,dim1=-2,dim2=-1)) # remove diagonal for tsA
tsP = tsP - torch.diag_embed(torch.diagonal(tsP,dim1=-2,dim2=-1)) # remove diagonal for tsP
tsP = torch.where(tsP<1,tsP,1.) # elements in tsP capped as 1
return csgc_V(Yh=torch.where(tsP<1,tsA-tsP,0.))/csgc_sd(vr=tsP*(1-tsP)) # csgc as tensor
elif var_structure == "poisson":
return csgc_V(Yh=tsA-tsP)/csgc_sd(vr=tsP) # csgc as tensor
else:
raise ValueError("variance structure can only be bernoulli or poisson!")
def csgc_greedy(A,z0,var_structure="bernoulli",device="cpu"): # A,z0 as tensor
A = A.to(device)
z0 = z0.to(device)
k = len(torch.unique(z0))
n = A.shape[0]
stats0 = csgc(A,sbm_mle(A,z0,device)[1],var_structure,device) # initial csgc statistics
chisq0 = torch.sum(torch.square(stats0)) # initial chi-square value
zadj = z0
chisqadj = chisq0
chisq_diff = .01
chisq_log = zadj_log = torch.tensor(()).to(device) # records for chi-square values and labels for each iteration
if device == "cuda:0": # The maximum number of P matrices allowed for each calculation of csgc function (GPU and CPU)
maxsize = math.floor(torch.cuda.get_device_properties(0).total_memory*0.7/(n*n*4)/11)
if device == "cpu":
maxsize = math.floor(psutil.virtual_memory()[0]*0.7/(n*n*4)/11)
batchnum = math.ceil(n*(k-1)/maxsize) # Number of batches needed for each iteration below
print("Number of batches per iteration: ", batchnum)
while chisq_diff>0:
zhat_mat = torch.zeros((n*(k-1),n)).to(device) # list all possibilities with only one location changed for each iteration
all_k = torch.arange(1,k+1).to(device)
for iter in list(range(1,n*(k-1)+1)):
r = math.ceil(iter/(k-1))
s = iter-(r-1)*(k-1)
zhat = torch.clone(zadj)
zhat[r-1] = all_k[all_k!=zhat[r-1]][s-1]
zhat_mat[iter-1] = zhat
zhat_mat_batch = torch.split(zhat_mat,maxsize) # split all possibilities of labels into batches
chisq_all = []
for batch in range(batchnum):
tsP = torch.stack([sbm_mle(A,item,device)[1] for item in zhat_mat_batch[batch]]) # 3d tensor: last 2d records corresponding P matrix for all possible labels per batch
chisq_all.append(torch.sum(torch.square(csgc(A,tsP,var_structure,device)),1)) # calculate corresponding chi-square values per batch
del tsP # delete records to save memory
chisq_all = torch.cat(chisq_all) # combine all batches of chi-square values for one iteration
chisq_diff = torch.max(chisqadj-chisq_all) # record the least chi-square value, and calculate the difference with last iteration
update_ind = torch.argmin(chisq_all) # record the change of location corresponding to the least chi-square value
chisqadj = torch.min(chisq_all) # update chi-square values
print("chisq stats: ", chisqadj.item(), ", change location: ", math.ceil((update_ind+1)/(k-1)))
zadj = zhat_mat[update_ind].to(torch.uint8) # update labels
# print("adjusted labels: ", zadj)
chisq_log = torch.cat((chisq_log,torch.tensor([chisqadj]).to(device))) # add to records for chi-square values
zadj_log = torch.cat((zadj_log,zadj)) # add to records for labels
zadj_log = zadj_log.reshape(len(chisq_log),n)
chisq_out = chisq_log[len(chisq_log)-2] # the least chi-square value is the second last in records
z_out = zadj_log[len(chisq_log)-2].to(torch.uint8) # final labels are the second last row in records
stats_out = csgc(A,sbm_mle(A,z_out,device)[1],var_structure,device) # calculate the corresponding csgc statistics
return chisq_out,z_out,stats_out #chisq,z,stats_out as tensor
def wasserstein_uniform(p): # p as numpy/tensor
u = np.arange(0,1+1/len(p),1/len(p))
s = np.sort(np.concatenate((p,u)))
au = np.diff(s)*np.convolve(s,np.ones(2),'valid')/2
aph = np.full(len(au), np.nan)
aph[np.nonzero(np.in1d(s,np.sort(np.append(p,0))))[0]] = u
idx = np.where(~np.isnan(aph),np.arange(np.isnan(aph).size),0)
np.maximum.accumulate(idx,out=idx)
aph = aph[idx]
ap = np.diff(s)*aph
area = 2*np.sum(np.abs(au-ap))
return area # area as numpy
def ccr(label_true, label_est): # label_true/label_est as tensor
k = len(np.unique(label_true))
n = len(label_true)
all_perm = list(permutations(range(1, k+1)))
ccr_all = np.zeros(len(all_perm))
label_est = np.array(label_est)
for i, perm in enumerate(all_perm):
label_est_mapped = np.array([perm[val-1] for val in label_est])
ccr_all[i] = np.sum(label_est_mapped == np.array(label_true))
ccr = np.max(ccr_all)/n
return ccr # ccr as value
##################################################################
# Example for csgc package using GPU
if __name__ == '__main__':
torch.manual_seed(123)
# Generate adjacency matrix A and probability matrix P from
# parameter matrix K and label vector.
k = 4; n = 200
z = torch.repeat_interleave(torch.arange(1,k+1),int(n/k)).to(torch.uint8)
K = torch.tensor([[.8,.5,.1,.1],
[.5,.1,.1,.1],
[.1,.1,.8,.5],
[.1,.1,.5,.1]])
A,P = gen_adj_sbm(K,z,device="cuda:0")
# Calculate the maximum likelihood estimated K and P from A
# and true labels z.
Khat,Phat = sbm_mle(A,z,device="cuda:0")
# We can also get the estimated labels given A and number of
# communities k using spectral clustering method, and compare the
# estimated labels with true labels.
zhat = spectral_sbm(A,4,device="cuda:0")
print("Correct classification rate of spectral clustering: ", ccr(z,zhat), ".\n")
# If we use the estimated labels to further get the MLE for P,
# we can calculate the centred subgraph count statistics and check
# if these statistics deviate from 0 or not.
Khat2,Phat2 = sbm_mle(A,zhat,device="cuda:0")
print("A matrix, P matrix:\n", csgc(A,Phat2,device="cuda:0").cpu().numpy(),)
# We allow both A and P to be 3-dim tensor
print("A matrix, P tensor:\n", csgc(A,torch.stack((Phat,Phat2)),device="cuda:0"), ".")
print("A tensor, P matrix:\n", csgc(torch.stack((A,A)),Phat2,device="cuda:0"), ".")
print("A tensor, P tensor:\n", csgc(torch.stack((A,A)),torch.stack((Phat,Phat2)),device="cuda:0"), ".\n")
# Sum of squares of these statistics should approximately follow a
# chi-square distribution if SBM fits the network data. Suppose we
# run the above simulation multiple times, we can get a batch of
# p-values, which are supposed to follow a uniform distribution.
# We can calculate the Wasserstein distance between these p-values
# and a uniform distribution on [0,1].
import torch.distributions as dist
p = torch.zeros(100)
for i in range(100):
A1 = gen_adj_sbm(K,z,device="cuda:0")[0]
t = csgc(A1,sbm_mle(A1,z,device="cuda:0")[1],device="cuda:0")
p[i] = 1-dist.Chi2(10).cdf(torch.sum(t**2).to("cpu"))
print("Wasserstein distance between p-values and U[0,1]: ", wasserstein_uniform(p), ".\n")
# If these csgc statistics deviate from 0, we can use our csgc
# greedy algorithm to adjust label estimations, and see if correct
# classification rate increases.
chisqout,zout,statsout = csgc_greedy(A,zhat,device="cuda:0")
print("The Chisq value after greedy algorithm: ", chisqout, ".")
print("The adjusted label vector after greedy algorithm: ", zout, ".")
print("The csgc statistics after greedy algorithm: ", statsout, ".")
print("Correct classification rate after greedy algorithm: ", ccr(z,zout.to("cpu")), ".\n")
# For DCSBM, we can do similar things:
# Generate A and P.
Theta = torch.FloatTensor(n).uniform_(0.2,1)
dA,dP = gen_adj_dcsbm(K,Theta,z,device="cuda:0")
# Calculate numerical MLE for P (no closed form)
dPhat = dcsbm_mle(dA,z,device="cuda:0")[2]
# get spectral clustering estimated labels, and calculate the
# corrected classification rate.
dzhat = spectral_dcsbm(dA,4,device="cuda:0")
print("Correct classification rate of spectral clustering for DCSBM: ", ccr(z,dzhat), ".")