forked from alibaba/easyrobust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet50_example.py
29 lines (24 loc) · 1.13 KB
/
resnet50_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import torchvision
from easyrobust.benchmarks import *
#############################################################
# Define your model
#############################################################
model = torchvision.models.resnet50(pretrained=True)
model = model.eval()
if torch.cuda.is_available(): model = model.cuda()
#############################################################
# Start Evaluation
#############################################################
# ood
evaluate_imagenet_val(model, 'benchmarks/data/imagenet-val')
evaluate_imagenet_a(model, 'benchmarks/data/imagenet-a')
evaluate_imagenet_r(model, 'benchmarks/data/imagenet-r')
evaluate_imagenet_sketch(model, 'benchmarks/data/imagenet-sketch')
evaluate_imagenet_v2(model, 'benchmarks/data/imagenetv2')
evaluate_stylized_imagenet(model, 'benchmarks/data/imagenet-style')
evaluate_imagenet_c(model, 'benchmarks/data/imagenet-c')
# objectnet is optional since it spends a lot of disk storage. we skip it here.
# evaluate_objectnet(model, 'benchmarks/data/ObjectNet/images')
# adversarial
evaluate_imagenet_autoattack(model, 'benchmarks/data/imagenet-val')