-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathdensenet.lua
178 lines (139 loc) · 5.45 KB
/
densenet.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
require 'nn'
require 'cunn'
require 'cudnn'
require 'models/DenseConnectLayer'
local function createModel(opt)
--growth rate
local growthRate = opt.growthRate
--dropout rate, set it to 0 to disable dropout, non-zero number to enable dropout and set drop rate
local dropRate = opt.dropRate
--# channels before entering the first Dense-Block
local nChannels = 2 * growthRate
--compression rate at transition layers
local reduction = opt.reduction
--whether to use bottleneck structures
local bottleneck = opt.bottleneck
--N: # dense connected layers in each denseblock
local N = (opt.depth - 4)/3
if bottleneck then N = N/2 end
function addLayer(model, nChannels, opt)
if opt.optMemory >= 3 then
model:add(nn.DenseConnectLayerCustom(nChannels, opt))
else
model:add(DenseConnectLayerStandard(nChannels, opt))
end
end
function addTransition(model, nChannels, nOutChannels, opt, last, pool_size)
if opt.optMemory >= 3 then
model:add(nn.JoinTable(2))
end
model:add(cudnn.SpatialBatchNormalization(nChannels))
model:add(cudnn.ReLU(true))
if last then
model:add(cudnn.SpatialAveragePooling(pool_size, pool_size))
model:add(nn.Reshape(nChannels))
else
model:add(cudnn.SpatialConvolution(nChannels, nOutChannels, 1, 1, 1, 1, 0, 0))
if opt.dropRate > 0 then model:add(nn.Dropout(opt.dropRate)) end
model:add(cudnn.SpatialAveragePooling(2, 2))
end
end
local function addDenseBlock(model, nChannels, opt, N)
for i = 1, N do
addLayer(model, nChannels, opt)
nChannels = nChannels + opt.growthRate
end
return nChannels
end
-- Build DenseNet
local model = nn.Sequential()
if opt.dataset == 'cifar10' or opt.dataset == 'cifar100' then
--Initial convolution layer
model:add(cudnn.SpatialConvolution(3, nChannels, 3,3, 1,1, 1,1))
--Dense-Block 1 and transition
nChannels = addDenseBlock(model, nChannels, opt, N)
addTransition(model, nChannels, math.floor(nChannels*reduction), opt)
nChannels = math.floor(nChannels*reduction)
--Dense-Block 2 and transition
nChannels = addDenseBlock(model, nChannels, opt, N)
addTransition(model, nChannels, math.floor(nChannels*reduction), opt)
nChannels = math.floor(nChannels*reduction)
--Dense-Block 3 and transition
nChannels = addDenseBlock(model, nChannels, opt, N)
addTransition(model, nChannels, nChannels, opt, true, 8)
elseif opt.dataset == 'imagenet' then
--number of layers in each block
if opt.depth == 121 then
stages = {6, 12, 24, 16}
elseif opt.depth == 169 then
stages = {6, 12, 32, 32}
elseif opt.depth == 201 then
stages = {6, 12, 48, 32}
elseif opt.depth == 161 then
stages = {6, 12, 36, 24}
else
stages = {opt.d1, opt.d2, opt.d3, opt.d4}
end
--Initial transforms follow ResNet(224x224)
model:add(cudnn.SpatialConvolution(3, nChannels, 7,7, 2,2, 3,3))
model:add(cudnn.SpatialBatchNormalization(nChannels))
model:add(cudnn.ReLU(true))
model:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
--Dense-Block 1 and transition (56x56)
nChannels = addDenseBlock(model, nChannels, opt, stages[1])
addTransition(model, nChannels, math.floor(nChannels*reduction), opt)
nChannels = math.floor(nChannels*reduction)
--Dense-Block 2 and transition (28x28)
nChannels = addDenseBlock(model, nChannels, opt, stages[2])
addTransition(model, nChannels, math.floor(nChannels*reduction), opt)
nChannels = math.floor(nChannels*reduction)
--Dense-Block 3 and transition (14x14)
nChannels = addDenseBlock(model, nChannels, opt, stages[3])
addTransition(model, nChannels, math.floor(nChannels*reduction), opt)
nChannels = math.floor(nChannels*reduction)
--Dense-Block 4 and transition (7x7)
nChannels = addDenseBlock(model, nChannels, opt, stages[4])
addTransition(model, nChannels, nChannels, opt, true, 7)
end
if opt.dataset == 'cifar10' then
model:add(nn.Linear(nChannels, 10))
elseif opt.dataset == 'cifar100' then
model:add(nn.Linear(nChannels, 100))
elseif opt.dataset == 'imagenet' then
model:add(nn.Linear(nChannels, 1000))
end
--Initialization following ResNet
local function ConvInit(name)
for k,v in pairs(model:findModules(name)) do
local n = v.kW*v.kH*v.nOutputPlane
v.weight:normal(0,math.sqrt(2/n))
if cudnn.version >= 4000 then
v.bias = nil
v.gradBias = nil
else
v.bias:zero()
end
end
end
local function BNInit(name)
for k,v in pairs(model:findModules(name)) do
v.weight:fill(1)
v.bias:zero()
end
end
ConvInit('cudnn.SpatialConvolution')
BNInit('cudnn.SpatialBatchNormalization')
for k,v in pairs(model:findModules('nn.Linear')) do
v.bias:zero()
end
model:type(opt.tensorType)
if opt.cudnn == 'deterministic' then
model:apply(function(m)
if m.setMode then m:setMode(1,1,1) end
end)
end
model:get(1).gradInput = nil
print(model)
return model
end
return createModel