-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel_Damb_bio_27feb23.Rmd
3517 lines (2549 loc) · 108 KB
/
Model_Damb_bio_27feb23.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Damb_climatic-only_Niche_models"
author: "Laura J. Giraldo Kalil"
date: '2023-february-27'
output: html_document and several raster(tiff), csv, txt and graphic files
---
Wallace Session 2021-10-015
Edited and personalized by Laura J. Giraldo Kalil
27 february 2023
This file contains species niche ecological models from the manuscript "Ecological niche comparison among closely related tree species of Lauraceae using climatic and edaphic data." Submited for its publication in Frontiers of Biogeography
The models and the main structure of the file were built with
Wallace v2.0.0 for Damburneya ambigens, D. colorata, D. gentlei and D.salicifolia
usign five climate
variables(Bio1,Bio4,Bio12,Bio 14,Bio 15) at 1km resolution
The Environmental raster files are named with the following format: 'Bio_1.tif'
This script contains the steps for MaxEnt niche modeling, and niche overlap analyses with ecospat and NicheRover. Environmental layers and species occurrence data must be provided and prepared previously by the user. MaxEnt response curves are generated only for the chosen model.
Occurrence data of all species used here can be found in a single file. It is available in the Appendix S2, and it was named here as: "TODAS_filtradas_feb23.csv"
More information: <https://wallaceecomod.github.io/>
The function "sdm_threshold" (by Cecina Babish) was used to apply 10 percentile threshold to the predicted model raster. The function is available at: <https://babichmorrowc.github.io/post/2019-04-12-sdm-threshold/>
================
### Package installation
Wallace uses the following R packages that must be installed and loaded
before starting.
```{r}
library(spocc)
library(spThin)
library(dismo)
library(rgeos)
library(ENMeval)
library(wallace)
library(here)
library(ggplot2)
library(gridExtra)
library(terra)
library(ade4)
library(nicheROVER)
library(dplyr)
library(gridtext)
library(cowplot)
library(ggpubr)
library(scales)
```
------------------------------------------------------------------------
## Analysis for *Damburneya ambigens* (Da)
User CSV path with occurrence data. If the CSV file is not in the
current workspace, change to the correct file path
(e.g. “/Users/darwin/Documents/occs/”).
```{r}
# NOTE: provide the folder path of the .csv file
occs_path <- here("Distr_Nectandras","Ocurrencias_filtradas")
occs_path <- file.path(occs_path,"TODAS_filtradas_feb23.csv")
# get a list of species occurrence data
userOccs_Da <- occs_userOccs(
txtPath = occs_path,
txtName = "TODAS_filtradas_feb23.csv",
txtSep = ",",
txtDec = ".")
occs_Da <- userOccs_Da$Damburneya_ambigens$cleaned
```
### Save cleaned occurrences data
Save cleaned occurrences
```{r}
write.csv(occs_Da,
here("Distr_Nectandras","Ocurrencias_filtradas",
"cleanoccs_Dambigens.csv"))
```
### Obtain environmental data
Using user-specified variables.
```{r}
## Specify the directory with the environmental variables
dir_envs_Da <- here("Rasters","Seleccionados","cortados_biosoils")
envs_path <- file.path(dir_envs_Da,
c('Bio_1.tif' , 'Bio_4.tif', 'Bio_12.tif', 'Bio_14.tif', 'Bio_15.tif'))
# Create environmental object
envs_Da <- envs_userEnvs(
rasPath = envs_path,
rasName = c('Bio_1.tif' , 'Bio_4.tif', 'Bio_12.tif', 'Bio_14.tif', 'Bio_15.tif'),
doBrick = FALSE)
occs_xy_Da <- occs_Da[c('longitude', 'latitude')]
occs_vals_Da <- as.data.frame(raster::extract(envs_Da, occs_xy_Da))
# remove occurrence records with NA environmental values
occs_Da <- occs_Da[!(rowSums(is.na(occs_vals_Da)) > 1), ]
# also remove variable value rows with NA environmental values
occs_vals_Da <- na.omit(occs_vals_Da)
# add columns for env variable values for each occurrence record
occs_Da <- cbind(occs_Da, occs_vals_Da)
```
### Process environmental data
Sampling of 10000 background points and corresponding environmental data
using a user provided background extent with a 0.009 degree buffer.
```{r}
# Load the user provided shapefile or csv file with the desired extent.
##User must input the path to shapefile or csv file and the file name
# Define path
bgPath_Da <- list.files(path='C:/Users/Laura G/Documents/SIG_DAMBURNEYA/Poligonos/M_pol/Dambigens_M', full.names = TRUE)
bgExt_Da <- penvs_userBgExtent(
bgShp_path = paste0(bgPath_Da,"M_Dambigens", ".shp"),
bgShp_name = paste0("M_Dambigens", c(".shp", ".shx", ".dbf")),
userBgBuf = 0.009,
occs = occs_Da)
# Mask environmental data to provided extent
bgMask_Da <- penvs_bgMask(
occs = occs_Da,
envs = envs_Da,
bgExt = bgExt_Da)
# Sample background points from the provided area
bgSample_Da <- penvs_bgSample(
occs = occs_Da,
bgMask = bgMask_Da,
bgPtsNum = 10000)
# Extract values of environmental layers for each background point
bgEnvsVals_Da <- as.data.frame(raster::extract(bgMask_Da, bgSample_Da))
##Add extracted values to background points table
bgEnvsVals_Da <- cbind(scientific_name = paste0("bg_", "Damburneya ambigens"), bgSample_Da,
occID = NA, year = NA, institution_code = NA, country = NA,
state_province = NA, locality = NA, elevation = NA,
record_type = NA, bgEnvsVals_Da)
```
### Save background points
Save the 10000 generated background points with the extracted environmental information
```{r}
write.csv(bgEnvsVals_Da,
here("background","background_bio",
"Damburneya_ambigens_bgPoints_B.csv"))
```
### Partition occurrence data
Partition occurrences and background points for model training and
validation using “hierarchical checkerboard”, a spatial partition method
with an aggregation factor of 2.
```{r}
# R code to get partitioned data
groups_Da <- part_partitionOccs(
occs = occs_Da ,
bg = bgSample_Da,
method = "cb2",
bgMask = bgMask_Da,
aggFact = 2)
```
### Build and Evaluate Niche Model
Generating a species distribution model using the maxent.jar algorithm
as implemented in ENMeval V2.0 (with clamping = FALSE). For tuning using
L, LQ, P feature classes and regularization multipliers in the 1, 4
range increasing by 1. Not using any categorical predictor variables.
```{r}
# Run maxent model for the selected species
model_Da <- model_maxent(
occs = occs_Da,
bg = bgEnvsVals_Da,
user.grp = groups_Da,
bgMsk = bgMask_Da,
rms = c(1, 4),
rmsStep = 0.5,
fcs = c('L', 'LQ','LQH','LQP','LQHP'),
clampSel = FALSE,
algMaxent = "maxent.jar",
parallel = TRUE,
numCores = 3)
#Save models for future work
saveRDS(model_Da,
here("Modelos","bio_modelos","ambigens","model_Da_bio.rds"))
#For loading model:
#model_Da <- readRDS(here("Modelos","bio_modelos","ambigens","model_Da_bio.rds"))
```
#Export model results tables
Export tables with evaluation statistics for model evaluation
```{r}
write.csv(model_Da@results,
here("Modelos","bio_modelos","ambigens",
"Damburneya_ambigens_eval_Tbl_B.csv"))
write.csv(model_Da@results.partitions,
here("Modelos","bio_modelos","ambigens",
"Damburneya_ambigens__evalTblBins_B.csv"))
write.csv(model_Da@variable.importance,
here("Modelos","bio_modelos","ambigens",
"D_ambigens_var_importance_B.csv"))
```
### Visualize
Generate Maxent evaluation plots
```{r}
# Generate an evaluation plot
# create a colorblind friendly palette for evaluation plots
EVAL_palette <- c( '#4477AA', '#EE6677', '#228833', '#CCBB44', '#66CCEE', '#AA3377', '#BBBBBB')
#_____________AUC.val
maxentEvalPlot_Da_AUCval<- ENMeval::evalplot.stats(
model_Da,"auc.val","rm","fc")+
ylab("AUC value")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#____________AUC.diff
maxentEvalPlot_Da_AUCdiff<- ENMeval::evalplot.stats(
model_Da,"auc.diff","rm","fc")+
ylab("AUC diff.")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#_________OR.mtp
maxentEvalPlot_Da_ORmtp<- ENMeval::evalplot.stats(
model_Da, "or.mtp", x.var="rm", color="fc")+
ylab("OR.mtp")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#_______OR.10p
maxentEvalPlot_Da_OR10p<- ENMeval::evalplot.stats(
model_Da,"or.10p",
x.var="rm", color="fc")+
ylab("OR.10p")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#______________delta AIC
maxentEvalPlot_Da_AIC<- ENMeval::evalplot.stats(
model_Da,"delta.AICc","rm", "fc")+
ylab("delta AIC")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text = element_text(size = 8),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#Extract legend for multiple plot
get_only_legend <- function(plot) {
plot_table <- ggplot_gtable(ggplot_build(plot)) # get tabular interpretation of plot
legend_plot <- which(sapply(plot_table$grobs, function(x) x$name) == "guide-box") # Mark only legend in plot
legend <- plot_table$grobs[[legend_plot]] # extract legend
return(legend) # return legend
}
#Temporary plot to extract legend
for_legend_EVAL_Da<-maxentEvalPlot_Da_AIC+theme(legend.position = "bottom")
legend_EVAL_Da <- get_only_legend(for_legend_EVAL_Da)
x_axis_title_EVAL_Da <- grid.text("Regularization multiplier",
just="bottom",
gp=gpar(fontsize=9)
)
EVAL_Da_title <- text_grob("D. ambigens", size = 9, face = "italic")
tmp_combined_EVAL_Da<-grid.arrange(maxentEvalPlot_Da_AUCval,
maxentEvalPlot_Da_AUCdiff,
maxentEvalPlot_Da_ORmtp,
maxentEvalPlot_Da_OR10p,
maxentEvalPlot_Da_AIC,
ncol=1, nrow=5,
heights=c(1,1,1,1,1),
widths=1.2) #temporary combined plot
#Save evaluation plots
pdf(here::here("Modelos","bio_modelos","ambigens",
"EvalPlots_Da_B.pdf"),width = 2.5)
EVAL_Da<-grid.arrange(tmp_combined_EVAL_Da,
x_axis_title_EVAL_Da,legend_EVAL_Da,
top=EVAL_Da_title,
nrow = 3, ncol=1,
heights=c(5,0.2,0.1),
widths=1.2)
dev.off()
```
### Visualize
First, MaxEnt evaluation plots are analized and the best model is chosen.
Generate response plots for the selected model: LQ_rm1
```{r}
# Generate response plots
pdf(here("Modelos","bio_modelos","ambigens","responsePlots_Da_B.pdf"))
dismo::response(
model_Da@models$fc.LQ_rm.1,col="#CC3311",expand=20,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_1_resp_Da <- dismo::response(
model_Da@models$fc.LQ_rm.1,var="Bio_1",col="#CC3311",expand=20,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_4_resp_Da <- dismo::response(
model_Da@models$fc.LQ_rm.1,var="Bio_4",col="#CC3311",expand=100,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_12_resp_Da <- dismo::response(
model_Da@models$fc.LQ_rm.1,var="Bio_12",col="#CC3311",expand=1000,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_14_resp_Da <- dismo::response(
model_Da@models$fc.LQ_rm.1,var="Bio_14",col="#CC3311",expand=50,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_15_resp_Da <- dismo::response(
model_Da@models$fc.LQ_rm.1,var="Bio_15",col="#CC3311",expand=100,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
dev.off()
```
### Visualize
Generate a map of the Maxent generated model with a “p10” threshold rule (cloglog transformation)
```{r}
# Select current model and obtain raster prediction
m_Da <- model_Da@models[["fc.LQ_rm.1"]]
predSel_Da <- dismo::predict(
m_Da, bgMask_Da,
args = c(paste0("outputformat=", "cloglog"),
paste0("doclamp=", tolower(as.character(TRUE)))),
na.rm = TRUE)
#Save the continuous cloglog prediction raster
writeRaster(predSel_Da,here("Modelos","bio_modelos",
"ambigens",
"cloglog_Dambigens_B.tif"),
format="GTiff",
overwritte=TRUE)
#Apply the function "sdm_threshold" (by Cecina Babish) to apply 10 percentile threshold to the predicted model raster the function is available at: https://babichmorrowc.github.io/post/2019-04-12-sdm-threshold/
#Call function
sdm_threshold <- function(sdm, occs, type = "mtp", binary = FALSE){
occPredVals <- raster::extract(sdm, occs)
if(type == "mtp"){
thresh <- min(na.omit(occPredVals))
} else if(type == "p10"){
if(length(occPredVals) < 10){
p10 <- floor(length(occPredVals) * 0.9)
} else {
p10 <- ceiling(length(occPredVals) * 0.9)
}
thresh <- rev(sort(occPredVals))[p10]
}
sdm_thresh <- sdm
sdm_thresh[sdm_thresh < thresh] <- NA
if(binary){
sdm_thresh[sdm_thresh >= thresh] <- 1
}
return(sdm_thresh)
}
#Calculate 10 percentile training presence threshold
predSel_Da_trhld<-sdm_threshold(predSel_Da,occs_Da[,3:4],"p10",binary=TRUE)
### Save binary raster prediction based on 10 percentile presence classification
writeRaster(predSel_Da_trhld,here("Modelos","bio_modelos",
"ambigens",
"binp10_cloglog_Dambigens_B.tif"),
format="GTiff",
overwritte=TRUE)
```
------------------------------------------------------------------------
## Analysis for *Damburneya colorata* (Dc)
User CSV path with occurrence data. If the CSV file is not in the
current workspace, change to the correct file path
(e.g. “/Users/darwin/Documents/occs/”).
```{r}
# NOTE: provide the folder path of the .csv file
occs_path <- here("Distr_Nectandras","Ocurrencias_filtradas")
occs_path <- file.path(occs_path,"TODAS_filtradas_feb23.csv")
# get a list of species occurrence data
userOccs_Dc <- occs_userOccs(
txtPath = occs_path,
txtName = "TODAS_filtradas_feb23.csv",
txtSep = ",",
txtDec = ".")
occs_Dc <- userOccs_Dc$Damburneya_colorata$cleaned
```
### Save cleaned occurrences data
Save cleaned occurrences
```{r}
write.csv(occs_Dc,
here("Distr_Nectandras","Ocurrencias_filtradas",
"cleanoccs_Dcolorata_new_.csv"))
```
### Obtain environmental data
Using user-specified variables.
```{r}
## Specify the directory with the environmental variables
dir_envs_Dc <- here("Rasters","Seleccionados","cortados_biosoils")
envs_path <- file.path(dir_envs_Dc, c('Bio_1.tif' , 'Bio_4.tif', 'Bio_12.tif', 'Bio_14.tif', 'Bio_15.tif'))
# Create environmental object
envs_Dc <- envs_userEnvs(
rasPath = envs_path,
rasName = c('Bio_1.tif' , 'Bio_4.tif', 'Bio_12.tif', 'Bio_14.tif', 'Bio_15.tif'),
doBrick = FALSE)
occs_xy_Dc <- occs_Dc[c('longitude', 'latitude')]
occs_vals_Dc <- as.data.frame(raster::extract(envs_Dc, occs_xy_Dc))
# remove occurrence records with NA environmental values
occs_Dc <- occs_Dc[!(rowSums(is.na(occs_vals_Dc)) > 1), ]
# also remove variable value rows with NA environmental values
occs_vals_Dc <- na.omit(occs_vals_Dc)
# add columns for env variable values for each occurrence record
occs_Dc <- cbind(occs_Dc, occs_vals_Dc)
```
### Process environmental data
Sampling of 10000 background points and corresponding environmental data
using a user provided background extent with a 0.009 degree buffer.
```{r}
# Load the user provided shapefile or csv file with the desired extent.
##User must input the path to shapefile or csv file and the file name
# Define path
bgPath_Dc <- list.files(path='C:/Users/Laura G/Documents/SIG_DAMBURNEYA/Poligonos/M_pol/Dcolorata_M', full.names = TRUE)
bgExt_Dc <- penvs_userBgExtent(
bgShp_path = paste0(bgPath_Dc, "M_Dcol_ok", ".shp"),
bgShp_name = paste0("M_Dcol_ok", c(".shp", ".shx", ".dbf")),
userBgBuf = 0.009,
occs = occs_Dc)
# Mask environmental data to provided extent
bgMask_Dc <- penvs_bgMask(
occs = occs_Dc,
envs = envs_Dc,
bgExt = bgExt_Dc)
# Sample background points from the provided area
bgSample_Dc <- penvs_bgSample(
occs = occs_Dc,
bgMask = bgMask_Dc,
bgPtsNum = 10000)
# Extract values of environmental layers for each background point
bgEnvsVals_Dc <- as.data.frame(raster::extract(bgMask_Dc, bgSample_Dc))
##Add extracted values to background points table
bgEnvsVals_Dc <- cbind(scientific_name = paste0("bg_", "Damburneya colorata"), bgSample_Dc,
occID = NA, year = NA, institution_code = NA, country = NA,
state_province = NA, locality = NA, elevation = NA,
record_type = NA, bgEnvsVals_Dc)
```
### Save background points
Save the 10000 generated background points with the extracted environmental information
```{r}
write.csv(bgEnvsVals_Dc,
here("background","background_bio",
"Damburneya_colorata_new_bgPoints_B.csv"))
```
### Partition occurrence data
Partition occurrences and background points for model training and
validation using jackknife, a non-spatial partition method.
```{r}
# R code to get partitioned data
groups_Dc <- part_partitionOccs(
occs = occs_Dc ,
bg = bgSample_Dc,
method = "jack",
kfolds = 10)
```
### Build and Evaluate Niche Model
Generating a species distribution model using the maxent.jar algorithm
as implemented in ENMeval V2.0 (with clamping = FALSE). For tuning using
L, LQ, P feature classes and regularization multipliers in the 1, 4
range increasing by 1. Not using any categorical predictor variables.
```{r}
# Run maxent model for the selected species
model_Dc <- model_maxent(
occs = occs_Dc,
bg = bgEnvsVals_Dc,
user.grp = groups_Dc,
bgMsk = bgMask_Dc,
rms = c(1, 4),
rmsStep = 0.5,
fcs = c('L', 'LQ','LQH','LQP','LQHP'),
clampSel = FALSE,
algMaxent = "maxent.jar",
parallel = TRUE,
numCores = 3)
#Save models for future work
saveRDS(model_Dc,
here("Modelos","bio_modelos","colorata","model_Dc_new_bio.rds"))
#For loading model:
#model_Dc <- readRDS(here("Modelos","bio_modelos","colorata","model_Dcnew_bio.rds"))
```
#Export model results tables
Export tables with evaluation statistics for model evaluation
```{r}
write.csv(model_Dc@results,
here("Modelos","bio_modelos","colorata",
"Damburneya_colorata_new_eval_Tbl_B.csv"))
write.csv(model_Dc@results.partitions,
here("Modelos","bio_modelos","colorata",
"Damburneya_colorata_new_evalTblBins_B.csv"))
write.csv(model_Dc@variable.importance,
here("Modelos","bio_modelos","colorata",
"D_colorata_new_var_importance_B.csv"))
```
### Visualize
Generate a Maxent evaluation plot using “auc.diff” as evaluation
statistic.
```{r}
# Generate an evaluation plot
# create a colorblind friendly palette for evaluation plots
EVAL_palette <- c( '#4477AA', '#EE6677', '#228833', '#CCBB44', '#66CCEE', '#AA3377', '#BBBBBB')
#_____________AUC.val
maxentEvalPlot_Dc_AUCval<- ENMeval::evalplot.stats(
model_Dc,"auc.val","rm","fc")+
ylab("AUC value")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#____________AUC.diff
maxentEvalPlot_Dc_AUCdiff<- ENMeval::evalplot.stats(
model_Dc,"auc.diff","rm","fc")+
ylab("AUC diff.")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#_________OR.mtp
maxentEvalPlot_Dc_ORmtp<- ENMeval::evalplot.stats(
model_Dc, "or.mtp", x.var="rm", color="fc")+
ylab("OR.mtp")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#_______OR.10p
maxentEvalPlot_Dc_OR10p<- ENMeval::evalplot.stats(
model_Dc,"or.10p",
x.var="rm", color="fc")+
ylab("OR.10p")+
xlab("Regularization multiplier")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text.x = element_blank(),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#______________delta AIC
maxentEvalPlot_Dc_AIC<- ENMeval::evalplot.stats(
model_Dc,"delta.AICc","rm", "fc")+
ylab("delta AIC")+
theme_classic()+
theme(legend.position="none",
legend.title=element_blank(),
legend.key.size = unit(0.8,"line"),
axis.text = element_text(size = 8),
axis.title= element_text(size= 9),
axis.title.x = element_blank(),
legend.text= element_text (size=8),
legend.box = "horizontal",
panel.border = element_rect(colour = "black", fill=NA),
strip.text.x = element_blank(),
strip.background = element_rect(colour=NA),
strip.placement = "outside")+
scale_color_manual(values=EVAL_palette)
#Extract legend for multiple plot
get_only_legend <- function(plot) {
plot_table <- ggplot_gtable(ggplot_build(plot)) # get tabular interpretation of plot
legend_plot <- which(sapply(plot_table$grobs, function(x) x$name) == "guide-box") # Mark only legend in plot
legend <- plot_table$grobs[[legend_plot]] # extract legend
return(legend) # return legend
}
#Temporary plot to extract legend
for_legend_EVAL_Dc<-maxentEvalPlot_Dc_AIC+theme(legend.position = "bottom")
legend_EVAL_Dc <- get_only_legend(for_legend_EVAL_Dc)
x_axis_title_EVAL_Dc <- grid.text("Regularization multiplier",
just="bottom",
gp=gpar(fontsize=9)
)
EVAL_Dc_title <- text_grob("D. colorata", size = 9, face = "italic")
tmp_combined_EVAL_Dc<-grid.arrange(maxentEvalPlot_Dc_AUCval,
maxentEvalPlot_Dc_AUCdiff,
maxentEvalPlot_Dc_ORmtp,
maxentEvalPlot_Dc_OR10p,
maxentEvalPlot_Dc_AIC,
ncol=1, nrow=5,
heights=c(1,1,1,1,1),
widths=1.2) #temporary combined plot
#Save evaluation plots
pdf(here::here("Modelos","bio_modelos","colorata",
"EvalPlots_Dc_new_B.pdf"),width = 2.5)
EVAL_Dc<-grid.arrange(tmp_combined_EVAL_Dc,
x_axis_title_EVAL_Dc,legend_EVAL_Dc,
top=EVAL_Dc_title,
nrow = 3, ncol=1,
heights=c(5,0.2,0.1),
widths=1.2)
dev.off()
```
### Visualize
Generate response plots for the model LQP_rm.1
```{r}
pdf(here("Modelos","bio_modelos","colorata","responsePlots_Dc_new_B_.pdf"))
dismo::response(
model_Dc@models$fc.LQP_rm.1,col="#4477AA",expand=20,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_1_resp_Dc <- dismo::response(
model_Dc@models$fc.LQP_rm.1,var="Bio_1",col="#4477AA",expand=20,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_4_resp_Dc <- dismo::response(
model_Dc@models$fc.LQP_rm.1,var="Bio_4",col="#4477AA",expand=300,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_12_resp_Dc <- dismo::response(
model_Dc@models$fc.LQP_rm.1,var="Bio_12",col="#4477AA",expand=1000,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_14_resp_Dc <- dismo::response(
model_Dc@models$fc.LQP_rm.1,var="Bio_14",col="#4477AA",expand=50,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
Bio_15_resp_Dc <- dismo::response(
model_Dc@models$fc.LQP_rm.1,var="Bio_15",col="#4477AA",expand=100,fun=function(x, y, ...) predict(x, y, args="doclamp=FALSE", ...))
dev.off()
```
### Visualize
Generate a map of the Maxent generated model with a “p10” threshold rule (cloglog transformation)
```{r}
# Select current model and obtain raster prediction
m_Dc <- model_Dc@models[["fc.LQP_rm.1"]]
predSel_Dc <- dismo::predict(
m_Dc, bgMask_Dc,
args = c(paste0("outputformat=", "cloglog"),
paste0("doclamp=", tolower(as.character(TRUE)))),
na.rm = TRUE)
#Save the continuous cloglog prediction raster
writeRaster(predSel_Dc,here("Modelos","bio_modelos",
"colorata",
"cloglog_Dcolorata__new_B.tif"),
format="GTiff",
overwritte=TRUE)
#Apply the function "sdm_threshold" (by Cecina Babish) to apply 10 percentile threshold to the predicted model raster
predSel_Dc_trhld<-sdm_threshold(predSel_Dc,occs_Dc[,3:4],"p10",binary=TRUE)
### Save binary raster prediction based on 10 percentile presence classification
writeRaster(predSel_Dc_trhld,here("Modelos","bio_modelos",
"colorata",
"binp10_cloglog_Dcolorata_new_B.tif"),
format="GTiff",
overwritte=TRUE)
```
------------------------------------------------------------------------
## Analysis for *Damburneya gentlei* (Dg)
User CSV path with occurrence data. If the CSV file is not in the
current workspace, change to the correct file path
(e.g. “/Users/darwin/Documents/occs/”).
```{r}
# NOTE: provide the folder path of the .csv file
occs_path <- here("Distr_Nectandras","Ocurrencias_filtradas")
occs_path <- file.path(occs_path,"TODAS_filtradas_feb23.csv")
# get a list of species occurrence data
userOccs_Dg <- occs_userOccs(
txtPath = occs_path,
txtName = "TODAS_filtradas_feb23.csv",
txtSep = ",",
txtDec = ".")
occs_Dg <- userOccs_Dg$Damburneya_gentlei$cleaned
```
### Save cleaned occurrences data
Save cleaned occurrences
```{r}
write.csv(occs_Dg,
here("Distr_Nectandras","Ocurrencias_filtradas",
"cleanoccs_Dgentlei.csv"))
```
### Obtain environmental data
Using user-specified variables.
```{r}
## Specify the directory with the environmental variables
dir_envs_Dg <- here("Rasters","Seleccionados","cortados_biosoils")
envs_path <- file.path(dir_envs_Dg, c('Bio_1.tif' , 'Bio_4.tif', 'Bio_12.tif', 'Bio_14.tif', 'Bio_15.tif'))
# Create environmental object
envs_Dg <- envs_userEnvs(
rasPath = envs_path,
rasName = c('Bio_1.tif' , 'Bio_4.tif', 'Bio_12.tif', 'Bio_14.tif', 'Bio_15.tif'),
doBrick = FALSE)
occs_xy_Dg <- occs_Dg[c('longitude', 'latitude')]
occs_vals_Dg <- as.data.frame(raster::extract(envs_Dg, occs_xy_Dg))
# remove occurrence records with NA environmental values
occs_Dg <- occs_Dg[!(rowSums(is.na(occs_vals_Dg)) > 1), ]
# also remove variable value rows with NA environmental values
occs_vals_Dg <- na.omit(occs_vals_Dg)
# add columns for env variable values for each occurrence record
occs_Dg <- cbind(occs_Dg, occs_vals_Dg)
```
### Process environmental data
Sampling of 10000 background points and corresponding environmental data
using a user provided background extent with a 0.009 degree buffer.
```{r}
# Load the user provided shapefile or csv file with the desired extent.
##User must input the path to shapefile or csv file and the file name