-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2dcnn.py
37 lines (25 loc) · 1.14 KB
/
2dcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
import tflearn.datasets.mnist as mnist
X, Y, test_X, test_Y = mnist.load_data(one_hot=True)
X = X.reshape([-1,28,28,1])
test_X = test_X.reshape([-1,28,28,1])
convnet = input_data(shape=[None,28,28,1], name='input')
convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 10, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet)
model.fit({'input': X}, {'targets': Y}, n_epoch=10,
validation_set=({'input': test_X}, {'targets': test_Y}),
snapshot_step=500, show_metric=True, run_id='mnist')
model.save('tflearncnn.model')
model.load('tflearncnn.model')
print(model.predict([test_X[1]]))