-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainPhase1.py
160 lines (141 loc) · 3.11 KB
/
trainPhase1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import nltkwordextraction
import activeBayesianClassifier as bayes
import os,sys
from random import randint
import wordextractor as we
from sets import Set
import activeknn as knn
f1 = open("Data/unlabeled.txt",'r')
f2 = open("Data/labeled.txt",'r')
poskeywords = []
negkeywords = []
f3 = open("posT.txt",'r')
f4 = open("negT.txt",'r')
for l in f3:
poskeywords.append(l[:-1])
for l in f4:
negkeywords.append(l[:-1])
knnpos = []
knnneg = []
pos = Set()
neg = Set()
maxp = 10
maxn = 10
supply=[]
#sprint(randint(0,9))
unlabel= []
label = []
test = []
i=0
for l in f1:
if(i<10200):
unlabel.append(l)
i+=1
i=0
for l in f2:
if(i<10200):
label.append(l)
else:
test.append(l)
i+=1
#print label
var = []
def addPosKeywords(index):
tokens = we.make_token(label[index][1:])
l = Set()
for t in tokens:
if t in poskeywords:
l.add(t)
if(len(l)!=0):
knnpos.append(l)
return l
def addNegKeywords(index):
tokens = we.make_token(label[index][1:])
l = Set()
for t in tokens:
if t in negkeywords:
l.add(t)
if(len(l)!=0):
knnneg.append(l)
return l
#print test
def testModel():
acc=0
for t in test:
tokens = we.make_token(t[1:])
prob = knn.knnclassifier(knnpos,knnneg,tokens.keys(),5)
if((prob[1]>prob[0])==(t[0]=="1") or (prob[0]>prob[1])==(t[0]=="0")):
acc = acc+1
return (acc/462.0)*100
index = 0
while(maxp>0):
if label[index][0] == "1":
maxp -=1
tokens = we.make_token(label[index][1:])
l = Set()
for t in tokens:
if t in poskeywords :
pos.add(t)
l.add(t)
if(len(l)!=0):
knnpos.append(l)
index+=2
index = 1
while(maxn>0):
if label[index][0] == "0":
maxn -=1
tokens = we.make_token(label[index][1:])
l = Set()
for t in tokens:
if t in negkeywords :
neg.add(t)
l.add(t)
if(len(l)!=0):
knnneg.append(l)
index+=2
print len(pos)
print len(neg)
#print knnpos
i=0
acc = 0
"""while(i<100):
index = randint(0,10661)
tokens = we.make_token(label[index][1:])
prob = knn.knnclassifier(knnpos,knnneg,tokens.keys(),5)
if(prob[-1]==1):
i = i+1
print (prob[1]>prob[0]),label[index][0]
if((prob[1]>prob[0])==(label[index][0]=="1") or (prob[0]>prob[1])==(label[index][0]=="0")):
acc = acc+1
print acc"""
extra = 0
dump = 0
print pos,neg,testModel()
for i in range(200,10200):
active=0
index = i
if(i%1000==0):
print "at i",i,"used set",extra,testModel()
tokens = we.make_token(label[index][1:])
bayesprob = bayes.bayesianClassifier(pos,neg,tokens.keys())
knnprob = knn.knnclassifier(knnpos,knnneg,tokens.keys(),5)
if((bayesprob[1]>=bayesprob[0] and knnprob[1]<=knnprob[0]) or (bayesprob[1]<=bayesprob[0] and knnprob[1]>=knnprob[0])):
active=1
#print label[index][:-1]
#print tokens.keys().
#else:
#print bayesprob,knnprob
if(bayesprob[-1]==0 or knnprob[-1]==0 or active==1 ):
if(label[index][0]=="1"):
l = addPosKeywords(index)
else:
l = addNegKeywords(index)
#print l
if len(l)==0:
dump+=1
#print we.tagged_tokens(label[index][1:])
else:
extra+=1
#print pos
#print neg
print extra,dump