-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
728 lines (622 loc) · 24 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# ==============================================================================
# Copyright 2024 Luca Della Libera.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""K-means vector quantization."""
# Adapted from:
# https://github.com/jokofa/torch_kmeans/tree/be7d2b78664e81a985ddfa6d21d94917a8b49fe6
import logging
from typing import List, Optional, Tuple, Union
import torch
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from torch import Tensor, nn
__all__ = [
"KMeansMultiQuantizer",
"KMeansQuantizer",
"KMeansResidualQuantizer",
]
_LOGGER = logging.getLogger(__file__)
class KMeansQuantizer(nn.Module):
"""K-means quantizer.
Arguments
---------
num_features:
The number of features.
num_clusters:
The number of clusters.
init:
Method to initialize cluster centroids. One of ["random"].
normalize:
Method to use to normalize input. One of [None, "mean", "minmax", "unit"].
References
----------
.. [1] Stuart P. Lloyd.
"Least squares quantization in PCM".
In: IEEE Trans. Information Theory. 1982, pp. 129-137.
URL: https://doi.org/10.1109/TIT.1982.1056489
Examples
--------
>>> import torch
>>>
>>> batch_size = 8
>>> seq_length = 200
>>> num_features = 64
>>> num_clusters = 4
>>> kmeans = KMeansQuantizer(num_features, num_clusters)
>>> input = torch.randn(batch_size, seq_length, num_features)
>>> labels, centroids = kmeans(input)
>>> drift = kmeans.step(input, labels)
"""
_INIT_METHODS = ["random"]
_NORM_METHODS = ["mean", "minmax", "unit"]
def __init__(
self,
num_features: "int",
num_clusters: "int",
init: "str" = "random",
normalize: "Optional[Union[str, bool]]" = None,
) -> "None":
super().__init__()
self.num_features = num_features
self.num_clusters = num_clusters
self.init = init.lower()
self.normalize = normalize
self._check_params()
# Register centroids as a buffer, with "inf" indicating uninitialized centroids
self.register_buffer(
"centroids",
torch.full((self.num_clusters, self.num_features), float("inf")),
)
def reset_parameters(self, feats: "Tensor") -> "None":
"""Reset parameters.
Arguments
---------
feats:
The input features, shape: [*batch_shape, num_features].
"""
feats = feats.reshape(-1, self.num_features)
if feats.shape[0] >= self.num_clusters:
self.centroids = _init_centroids(
feats, self.num_clusters, self.init
).float()
return
_LOGGER.warning(
"The first batch contains less samples than centroids, skipping initialization..."
)
def forward(
self, feats: "Tensor", return_centroids: "bool" = True,
) -> "Tuple[Tensor, Optional[Tensor]]":
"""Forward pass.
Arguments
---------
feats:
The input features, shape: [*batch_shape, num_features].
Alternatively, the cluster assignments, shape: [*batch_shape]
(useful to retrieve the assigned centroids).
return_centroids:
True to additionally return the assigned centroids, False otherwise.
Returns
-------
- The cluster assignments, shape: [*batch_shape].
- If `return_centroids=True`, the assigned centroids.
"""
if return_centroids and feats.shape[-1] != self.num_features:
# Assume a cluster assignment is given as input
labels = feats
batch_shape = labels.shape
labels = labels.flatten()
assigned_centroids = self.centroids.gather(
0, labels[:, None].expand(-1, self.num_features)
).clone()
labels = labels.reshape(batch_shape)
assigned_centroids = assigned_centroids.reshape(
*batch_shape, self.num_features
)
return labels, assigned_centroids
batch_shape = feats.shape[:-1]
feats = feats.reshape(-1, self.num_features)
if self.centroids[0, 0].isinf():
# Initialize centroids
self.reset_parameters(feats)
if self.normalize is not None:
feats = _normalize(feats, self.normalize)
# Handle mixed precision
centroids = self.centroids.to(feats)
dist = _compute_pairwise_distance(feats, centroids)
# Get cluster assignments (index of the closest centroid)
labels = dist.argmin(dim=-1)
if return_centroids:
assigned_centroids = centroids.gather(
0, labels[:, None].expand(-1, self.num_features)
).clone()
labels = labels.reshape(batch_shape)
assigned_centroids = assigned_centroids.reshape(
*batch_shape, self.num_features
)
return labels, assigned_centroids
labels = labels.reshape(batch_shape)
return labels, None
def step(
self,
feats: "Tensor",
labels: "Optional[Tensor]" = None,
return_drift: "bool" = True,
) -> "Optional[Tensor]":
""" "Lloyd's K-means update.
Arguments
---------
feats:
The input features, shape: [*batch_shape, num_features].
labels:
The corresponding labels, shape: [*batch_shape].
return_drift:
True to return the drift between current and previous centroids, False otherwise.
Returns
-------
If `return_drift=True`, the drift between current and previous centroids.
"""
feats = feats.reshape(-1, self.num_features)
if feats.shape[0] < self.num_clusters:
_LOGGER.warning(
f"Number of samples ({feats.shape[0]}) is less than the number "
f"of clusters ({self.num_clusters}), skipping this batch",
)
return torch.zeros(1, device=feats.device) if return_drift else None
if labels is None:
labels, _ = self.forward(feats, return_centroids=False)
labels = labels.flatten()
# Update cluster centroids
old_centroids = self.centroids.clone()
self.centroids = _group_by_label_mean(feats, labels, self.num_clusters)
if return_drift:
# Compute centroid drift
drift = _compute_drift(self.centroids, old_centroids)
return drift
def evaluate(self, feats: "Tensor", labels: "Optional[Tensor]" = None) -> "Tensor":
"""Compute inertia for the current batch, i.e. the sum of squared distances
of samples to their closest cluster centroid.
Arguments
---------
feats:
The input features, shape: [*batch_shape, num_features].
labels:
The corresponding labels, shape: [*batch_shape].
Returns
-------
The inertia for the current batch.
"""
batch_shape = feats.shape[:-1]
feats = feats.reshape(-1, self.num_features)
if labels is None:
labels, _ = self.forward(feats, return_centroids=False)
labels = labels.flatten()
inertia = _compute_inertia(feats, self.centroids, labels)
inertia = inertia.reshape(batch_shape)
return inertia
def _check_params(self):
"""Check initialization parameters."""
if self.num_features < 1:
raise ValueError(f"`num_features` ({self.num_features}) must be > 0")
if self.num_clusters < 2:
raise ValueError(f"`num_clusters` ({self.num_clusters}) must be > 1")
if self.init not in self._INIT_METHODS:
raise ValueError(
f"`init` ({self.init}) must be one of {self._INIT_METHODS}"
)
if isinstance(self.normalize, bool):
if self.normalize:
self.normalize = "mean"
else:
self.normalize = None
if self.normalize is not None and self.normalize not in self._NORM_METHODS:
raise ValueError(
f"`normalize` ({self.normalize}) must be one of {self._NORM_METHODS}"
)
def __repr__(self):
return (
f"{type(self).__name__}("
f"num_features: {self.num_features}, "
f"num_clusters: {self.num_clusters}, "
f"init: {self.init}, "
f"normalize: {self.normalize})"
)
class KMeansMultiQuantizer(nn.Module):
"""K-means quantizer with multiple instances."""
def __init__(self, *args, **kwargs) -> "None":
super().__init__()
max_length = max(
len(v)
for v in args + tuple(kwargs.values())
if isinstance(v, (list, tuple))
)
args = [v if isinstance(v, (list, tuple)) else [v] * max_length for v in args]
kwargs = {
k: v if isinstance(v, (list, tuple)) else [v] * max_length
for k, v in kwargs.items()
}
all_args = list(zip(*args))
all_kwargs_values = list(zip(*kwargs.values()))
all_kwargs = [dict(zip(kwargs.keys(), values)) for values in all_kwargs_values]
if not all_args:
all_args = [[] for _ in range(len(all_kwargs))]
if not all_kwargs:
all_kwargs = [{} for _ in range(len(all_args))]
assert len(all_args) == len(all_kwargs)
kmeanss = [
KMeansQuantizer(*args, **kwargs)
for args, kwargs in zip(all_args, all_kwargs)
]
self.kmeanss = nn.ModuleList(kmeanss)
@property
def num_features(self) -> "List[int]":
return [kmeans.num_features for kmeans in self.kmeanss]
@property
def num_clusters(self) -> "List[int]":
return [kmeans.num_clusters for kmeans in self.kmeanss]
@property
def init(self) -> "List[str]":
return [kmeans.init for kmeans in self.kmeanss]
@property
def normalize(self) -> "List[str]":
return [kmeans.normalize for kmeans in self.kmeanss]
@property
def centroids(self) -> "Union[Tensor, List[Tensor]]":
if len(self.kmeanss) == 1:
# Fast path
return self.kmeanss[0].centroids[..., None]
centroids_list = [kmeans.centroids for kmeans in self.kmeanss]
try:
centroids = torch.stack(centroids_list).movedim(0, -1)
except RuntimeError:
centroids = centroids_list
return centroids
def reset_parameters(self, feats: "Tensor") -> "None":
assert feats.shape[-1] == len(self.kmeanss)
for i, kmeans in enumerate(self.kmeanss):
kmeans.reset_parameters(feats[..., i])
def forward(
self, feats: "Tensor", return_centroids: "bool" = True
) -> "Tuple[Tensor, Optional[Tensor]]":
assert feats.shape[-1] == len(self.kmeanss)
if len(self.kmeanss) == 1:
# Fast path
labels, assigned_centroids = self.kmeanss[0](
feats[..., 0], return_centroids
)
labels = labels[..., None]
if return_centroids:
assigned_centroids = assigned_centroids[..., None]
return labels, assigned_centroids
return labels
labels_list, assigned_centroids_list = [], []
for i, kmeans in enumerate(self.kmeanss):
labels, assigned_centroids = kmeans(feats[..., i], return_centroids)
labels_list.append(labels)
assigned_centroids_list.append(assigned_centroids)
labels = torch.stack(labels_list).movedim(0, -1)
if return_centroids:
assigned_centroids = torch.stack(assigned_centroids_list).movedim(0, -1)
return labels, assigned_centroids
return labels
def step(
self,
feats: "Tensor",
labels: "Optional[Tensor]" = None,
return_drift: "bool" = True,
) -> "Optional[Tensor]":
assert feats.shape[-1] == len(self.kmeanss)
total_drift = 0.0
for i, kmeans in enumerate(self.kmeanss):
drift = kmeans.step(
feats[..., i],
labels[..., i] if labels is not None else None,
return_drift,
)
if return_drift:
total_drift += drift
if return_drift:
return total_drift / len(self.kmeanss)
def evaluate(self, feats: "Tensor", labels: "Optional[Tensor]" = None) -> "Tensor":
assert feats.shape[-1] == len(self.kmeanss)
total_inertia = 0.0
for i, kmeans in enumerate(self.kmeanss):
inertia = kmeans.evaluate(
feats[..., i], labels[..., i] if labels is not None else None
)
total_inertia += inertia
return total_inertia / len(self.kmeanss)
class KMeansResidualQuantizer(KMeansMultiQuantizer):
"""Residual K-means quantizer."""
def reset_parameters(
self, feats: "Tensor", index: "Optional[int]" = None
) -> "None":
assert feats.shape[-1] == 1
if index is not None:
self.kmeanss[index].reset_parameters(feats[..., 0])
return
for i, kmeans in enumerate(self.kmeanss):
kmeans.reset_parameters(feats[..., 0])
def forward(
self,
feats: "Tensor",
return_centroids: "bool" = True,
sum_centroids: "bool" = True,
index: "Optional[int]" = None,
) -> "Tuple[Tensor, Optional[Tensor]]":
assert feats.shape[-1] == 1
if len(self.kmeanss) == 1:
# Fast path
labels, assigned_centroids = self.kmeanss[0](
feats[..., 0], return_centroids
)
labels = labels[..., None]
if return_centroids:
assigned_centroids = assigned_centroids[..., None]
return labels, assigned_centroids
return labels
labels_list, assigned_centroids_list = [], []
residual = feats[..., 0]
for i, kmeans in enumerate(self.kmeanss):
labels, assigned_centroids = kmeans(residual, return_centroids=True)
labels_list.append(labels)
assigned_centroids_list.append(assigned_centroids)
if i == index or i == (len(self.kmeanss) - 1):
break
residual = residual - assigned_centroids
labels = torch.stack(labels_list).movedim(0, -1)
if return_centroids:
assigned_centroids = torch.stack(assigned_centroids_list).movedim(0, -1)
if sum_centroids:
assigned_centroids = assigned_centroids.sum(dim=-1, keepdim=True)
return labels, assigned_centroids
return labels
def step(
self,
feats: "Tensor",
labels: "Optional[Tensor]" = None,
return_drift: "bool" = True,
index: "Optional[int]" = None,
) -> "Optional[Tensor]":
assert feats.shape[-1] == 1
residual = feats[..., 0]
for i, kmeans in enumerate(self.kmeanss):
if i == index or i == (len(self.kmeanss) - 1):
total_drift = kmeans.step(
residual,
labels[..., i] if labels is not None else None,
return_drift,
)
break
_, assigned_centroids = kmeans(residual, return_centroids=True)
residual = residual - assigned_centroids
if return_drift:
return total_drift / (i + 1)
def evaluate(
self,
feats: "Tensor",
labels: "Optional[Tensor]" = None,
index: "Optional[int]" = None,
) -> "Tensor":
assert feats.shape[-1] == 1
total_inertia = 0.0
residual = feats[..., 0]
for i, kmeans in enumerate(self.kmeanss):
inertia = kmeans.evaluate(
residual, labels[..., i] if labels is not None else None
)
total_inertia += inertia
if i == index or i == (len(self.kmeanss) - 1):
break
_, assigned_centroids = kmeans(residual, return_centroids=True)
residual = residual - assigned_centroids
return total_inertia / (i + 1)
@torch.jit.script
def _init_centroids(feats: "Tensor", k: "int", init: "str" = "random") -> "Tensor":
"""Initialize centroids according to specified method:
- "random": random initialization.
"""
if init == "random":
b = feats.shape[0]
rnd_idx = torch.multinomial(
torch.full((b,), 1 / b, device=feats.device), k, replacement=k > b
)
return feats[rnd_idx].reshape(k, -1)
else:
raise NotImplementedError
@torch.jit.script
def _normalize(
feats: "Tensor", normalize: "str" = "mean", eps: "float" = 1e-8
) -> "Tensor":
"""Normalize input features according to specified method:
- "mean": subtract sample mean.
- "minmax": min-max normalization subtracting sample min and divide by sample max.
- "unit": normalize features to lie on D-dimensional unit sphere.
"""
if normalize == "mean":
feats -= feats.mean(dim=0)[None]
return feats
elif normalize == "minmax":
feats -= feats.min(dim=-1).values[:, None]
feats /= feats.max(dim=-1).values[:, None]
return feats
elif normalize == "unit":
z_msk = feats == 0
feats = feats.clone()
feats[z_msk] = eps
feats = (1.0 / (feats.norm(p=2.0, dim=-1))).diag_embed() @ feats
return feats
else:
raise NotImplementedError
@torch.jit.script
def _compute_pairwise_distance(feats: "Tensor", centroids: "Tensor") -> "Tensor":
"""Compute pairwise distances between features and centroids."""
# Approximate implementation (time and memory-efficient)
feats_norm = (feats ** 2).sum(dim=-1)[:, None]
centroids_norm = (centroids ** 2).sum(dim=-1)[None]
dist = (feats_norm + centroids_norm - 2 * feats @ centroids.T).clamp(min=0.0).sqrt()
return dist
# @torch.jit.script
# def _compute_pairwise_distance(feats: "Tensor", centroids: "Tensor") -> "Tensor":
# Exact implementation (time and memory-inefficient)
# b, d = feats.shape
# k, d = centroids.shape
# x = feats[:, None].expand(b, k, d).reshape(-1, d)
# centroids = centroids.expand(b, k, d).reshape(-1, d)
# return nn.functional.pairwise_distance(x, centroids, p=2.0).reshape(b, k)
@torch.jit.script
def _group_by_label_mean(feats: "Tensor", labels: "Tensor", k: "int") -> "Tensor":
"""Group features by label and compute group mean."""
M = nn.functional.one_hot(labels, num_classes=k).T.to(feats.dtype)
M = nn.functional.normalize(M, p=1.0, dim=-1)
return M @ feats
@torch.jit.script
def _compute_drift(centroids: "Tensor", old_centroids: "Tensor") -> "Tensor":
"""Compute drift between current and previous centroids."""
dist = (centroids - old_centroids).norm(p=2.0, dim=-1)
dist[dist.isinf()] = 0.0
return dist.mean(dim=-1)
@torch.jit.script
def _compute_inertia(
feats: "Tensor", centroids: "Tensor", labels: "Tensor",
) -> "Tensor":
"""Compute inertia, i.e. the sum of squared distances of samples to their closest cluster centroid."""
b, d = feats.shape
# Select assigned centroid by label and compute squared distance
assigned_centroids = centroids.gather(0, labels[:, None].expand(-1, d))
# Squared distance to closest centroid
dist = (feats - assigned_centroids).norm(p=2.0, dim=-1) ** 2
dist[dist.isinf()] = 0
return dist
# Test
if __name__ == "__main__":
import time
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import MiniBatchKMeans
from sklearn.datasets import make_blobs
from sklearn.metrics.pairwise import pairwise_distances_argmin
np.random.seed(0)
torch.manual_seed(0)
n_samples = 30000
batch_size = 1024
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
max_iter = 100
X, labels_true = make_blobs(n_samples=n_samples, centers=centers, cluster_std=0.7)
# PyTorch
k_means_torch = KMeansQuantizer(2, n_clusters)
X_torch = torch.from_numpy(X)
t0 = time.time()
for epoch in range(max_iter):
for i in range(n_samples // batch_size):
batch = X_torch[i * batch_size : (i + 1) * batch_size]
k_means_torch.step(batch)
t_batch = time.time() - t0
# Scikit-learn
mbk = MiniBatchKMeans(
init="random",
n_clusters=n_clusters,
batch_size=batch_size,
max_iter=max_iter,
n_init=1,
max_no_improvement=10000,
reassignment_ratio=0.0,
verbose=0,
)
t0 = time.time()
mbk.fit(X)
t_mini_batch = time.time() - t0
k_means_torch_cluster_centers = k_means_torch.centroids.numpy()
order = pairwise_distances_argmin(
k_means_torch_cluster_centers, mbk.cluster_centers_
)
mbk_means_cluster_centers = mbk.cluster_centers_[order]
k_means_labels = pairwise_distances_argmin(X, k_means_torch_cluster_centers)
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)
fig = plt.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = ["#4EACC5", "#FF9C34", "#4E9A06"]
# PyTorch
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):
my_members = k_means_labels == k
cluster_center = k_means_torch_cluster_centers[k]
ax.plot(
X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".",
)
ax.plot(
cluster_center[0],
cluster_center[1],
"o",
markerfacecolor=col,
markeredgecolor="k",
markersize=6,
)
ax.set_title("MiniBatchKMeans PyTorch")
ax.set_xticks(())
ax.set_yticks(())
plt.text(
-3.5,
1.8,
"train time: %.2fs\ninertia: %f"
% (t_batch, k_means_torch.evaluate(X_torch).sum().item()),
)
# Scikit-learn
ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):
my_members = mbk_means_labels == k
cluster_center = mbk_means_cluster_centers[k]
ax.plot(
X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".",
)
ax.plot(
cluster_center[0],
cluster_center[1],
"o",
markerfacecolor=col,
markeredgecolor="k",
markersize=6,
)
ax.set_title("MiniBatchKMeans Scikit-learn")
ax.set_xticks(())
ax.set_yticks(())
plt.text(
-3.5, 1.8, "train time: %.2fs\ninertia: %f" % (t_mini_batch, mbk.inertia_),
)
# Initialize the different array to all False
different = mbk_means_labels == 4
ax = fig.add_subplot(1, 3, 3)
for k in range(n_clusters):
different += (k_means_labels == k) != (mbk_means_labels == k)
identical = np.logical_not(different)
ax.plot(
X[identical, 0], X[identical, 1], "w", markerfacecolor="#bbbbbb", marker=".",
)
ax.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".")
ax.set_title("Difference")
ax.set_xticks(())
ax.set_yticks(())
plt.show()
if __name__ == "__main__":
quantizer = KMeansMultiQuantizer(num_features=[300, 300], num_clusters=[10, 10])
input = torch.randn(5, 200, 300, 2)
labels, _ = quantizer(input)
print(labels.shape)
if __name__ == "__main__":
quantizer = KMeansResidualQuantizer(num_features=300, num_clusters=[10, 10])
input = torch.randn(5, 200, 300, 1)
labels, centroids = quantizer(input)
print(labels.shape)
print(centroids.shape)
print(quantizer.centroids.shape)