|
| 1 | +<!DOCTYPE html> |
| 2 | +<head> |
| 3 | +<meta charset="UTF-8"> |
| 4 | +<style> |
| 5 | +.r1 {color: #31748f; text-decoration-color: #31748f; font-weight: bold} |
| 6 | +.r2 {color: #908caa; text-decoration-color: #908caa} |
| 7 | +.r3 {color: #008080; text-decoration-color: #008080; font-weight: bold} |
| 8 | +.r4 {color: #00ff00; text-decoration-color: #00ff00; font-weight: bold} |
| 9 | +.r5 {color: #9ccfd8; text-decoration-color: #9ccfd8} |
| 10 | +.r6 {color: #908caa; text-decoration-color: #908caa; font-weight: bold} |
| 11 | +.r7 {font-weight: bold} |
| 12 | +.r8 {font-weight: bold; text-decoration: underline} |
| 13 | +.r9 {color: #ebbcba; text-decoration-color: #ebbcba} |
| 14 | +.r10 {color: #eb6f92; text-decoration-color: #eb6f92} |
| 15 | +.r11 {color: #808000; text-decoration-color: #808000; font-weight: bold} |
| 16 | +.r12 {color: #0000ff; text-decoration-color: #0000ff} |
| 17 | +.r13 {color: #f6c177; text-decoration-color: #f6c177} |
| 18 | +.r14 {color: #eb6f92; text-decoration-color: #eb6f92; font-weight: bold} |
| 19 | +body { |
| 20 | + color: #000000; |
| 21 | + background-color: #ffffff; |
| 22 | +} |
| 23 | +</style> |
| 24 | +</head> |
| 25 | +<html> |
| 26 | +<body> |
| 27 | + <code> |
| 28 | + <pre style="font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span class="r1">─────────────────────────────────────────────────────────────────────────────────────────────────── </span>🍇 Linear Regression - Wine data<span class="r1"> ────────────────────────────────────────────────────────────────────────────────────────────────────</span> |
| 29 | +<span class="r2">📆 November </span><span class="r3">02</span><span class="r2"> </span><span class="r3">2022</span><span class="r2"> </span><span class="r4">02:04:18</span> |
| 30 | +🐼 <span class="r2">Created by</span> <span class="r5">Ludek Cizinsky</span> |
| 31 | +<span class="r1">──────────────────────────────────────────────────────────────────────────────────────────────────── </span>🚧 Prepare input for the model<span class="r1"> ─────────────────────────────────────────────────────────────────────────────────────────────────────</span> |
| 32 | +<span class="r6">🐍 Load and split data</span> |
| 33 | +<span class="r6">🐍 Train test split</span> |
| 34 | +<span class="r6">🐍 Process the data</span> |
| 35 | +<span class="r1">────────────────────────────────────────────────────────────────────────────────────────────────────────── </span>🤖 Train the model<span class="r1"> ───────────────────────────────────────────────────────────────────────────────────────────────────────────</span> |
| 36 | +╭──── table of training ────╮ ╭───── training information ──────╮ |
| 37 | +│ ┏━━━━━━━┳━━━━━━━━┳━━━━━━┓ │ │ │ |
| 38 | +│ ┃<span class="r7"> Epoch </span>┃<span class="r7"> Loss </span>┃<span class="r7"> MAEr </span>┃ │ │ <span class="r8">Hyper-parameters</span> │ |
| 39 | +│ ┡━━━━━━━╇━━━━━━━━╇━━━━━━┩ │ │ │ |
| 40 | +│ │<span class="r2"> 00001 </span>│<span class="r9"> 02.670 </span>│<span class="r10"> 0.82 </span>│ │ │ Following hyper-parameters have │ |
| 41 | +│ │<span class="r2"> 00002 </span>│<span class="r9"> 00.727 </span>│<span class="r10"> 0.62 </span>│ │ │ been used: │ |
| 42 | +│ │<span class="r2"> 00003 </span>│<span class="r9"> 00.304 </span>│<span class="r10"> 0.43 </span>│ │ │ │ |
| 43 | +│ │<span class="r2"> 00004 </span>│<span class="r9"> 00.207 </span>│<span class="r10"> 0.49 </span>│ │ │ <span class="r11"> • </span>Epochs: 25 │ |
| 44 | +│ │<span class="r2"> 00005 </span>│<span class="r9"> 00.195 </span>│<span class="r10"> 0.33 </span>│ │ │ <span class="r11"> • </span>Loss func: mse │ |
| 45 | +│ │<span class="r2"> 00006 </span>│<span class="r9"> 00.142 </span>│<span class="r10"> 0.43 </span>│ │ │ <span class="r11"> • </span>Batch size: 29 │ |
| 46 | +│ │<span class="r2"> 00007 </span>│<span class="r9"> 00.137 </span>│<span class="r10"> 0.46 </span>│ │ │ <span class="r11"> • </span>LR: 0.15 │ |
| 47 | +│ │<span class="r2"> 00008 </span>│<span class="r9"> 00.193 </span>│<span class="r10"> 0.28 </span>│ │ │ │ |
| 48 | +│ │<span class="r2"> 00009 </span>│<span class="r9"> 00.108 </span>│<span class="r10"> 0.28 </span>│ │ │ │ |
| 49 | +│ │<span class="r2"> 00010 </span>│<span class="r9"> 00.087 </span>│<span class="r10"> 0.23 </span>│ │ │ <span class="r8">Training plot</span> │ |
| 50 | +│ │<span class="r2"> 00011 </span>│<span class="r9"> 00.093 </span>│<span class="r10"> 0.29 </span>│ │ │ │ |
| 51 | +│ │<span class="r2"> 00012 </span>│<span class="r9"> 00.093 </span>│<span class="r10"> 0.26 </span>│ │ │ 📈 See training plot <a class="r12" href="figures/training.png">here</a> │ |
| 52 | +│ │<span class="r2"> 00013 </span>│<span class="r9"> 00.085 </span>│<span class="r10"> 0.26 </span>│ │ ╰─────────────────────────────────╯ |
| 53 | +│ │<span class="r2"> 00014 </span>│<span class="r9"> 00.080 </span>│<span class="r10"> 0.24 </span>│ │ |
| 54 | +│ │<span class="r2"> 00015 </span>│<span class="r9"> 00.118 </span>│<span class="r10"> 0.45 </span>│ │ |
| 55 | +│ │<span class="r2"> 00016 </span>│<span class="r9"> 00.148 </span>│<span class="r10"> 0.24 </span>│ │ |
| 56 | +│ │<span class="r2"> 00017 </span>│<span class="r9"> 00.088 </span>│<span class="r10"> 0.40 </span>│ │ |
| 57 | +│ │<span class="r2"> 00018 </span>│<span class="r9"> 00.105 </span>│<span class="r10"> 0.43 </span>│ │ |
| 58 | +│ │<span class="r2"> 00019 </span>│<span class="r9"> 00.126 </span>│<span class="r10"> 0.26 </span>│ │ |
| 59 | +│ │<span class="r2"> 00020 </span>│<span class="r9"> 00.078 </span>│<span class="r10"> 0.24 </span>│ │ |
| 60 | +│ │<span class="r2"> 00021 </span>│<span class="r9"> 00.076 </span>│<span class="r10"> 0.27 </span>│ │ |
| 61 | +│ │<span class="r2"> 00022 </span>│<span class="r9"> 00.070 </span>│<span class="r10"> 0.22 </span>│ │ |
| 62 | +│ │<span class="r2"> 00023 </span>│<span class="r9"> 00.066 </span>│<span class="r10"> 0.31 </span>│ │ |
| 63 | +│ │<span class="r2"> 00024 </span>│<span class="r9"> 00.120 </span>│<span class="r10"> 0.52 </span>│ │ |
| 64 | +│ │<span class="r2"> 00025 </span>│<span class="r9"> 00.118 </span>│<span class="r10"> 0.23 </span>│ │ |
| 65 | +│ └───────┴────────┴──────┘ │ |
| 66 | +╰───────────────────────────╯ |
| 67 | +<span class="r1">───────────────────────────────────────────────────────────────────────────────────────────────────────── </span>🔮 Validate the model<span class="r1"> ─────────────────────────────────────────────────────────────────────────────────────────────────────────</span> |
| 68 | +🚥 <span class="r13">MSE</span>: <span class="r14">3.6739563478051167</span> |
| 69 | +</pre> |
| 70 | + </code> |
| 71 | +</body> |
| 72 | +</html> |
0 commit comments