-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_metrics.py
executable file
·106 lines (81 loc) · 3.61 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""py-motmetrics - metrics for multiple object tracker (MOT) benchmarking.
Christoph Heindl, 2017
https://github.com/cheind/py-motmetrics
"""
import argparse
import glob
import os
import logging
import pickle
import motmetrics as mm
import pandas as pd
from collections import OrderedDict
from pathlib import Path
def parse_args():
parser = argparse.ArgumentParser(description="""
Compute metrics for trackers using MOTChallenge ground-truth data.
Files
-----
All file content, ground truth and test files, have to comply with the
format described in
Milan, Anton, et al.
"Mot16: A benchmark for multi-object tracking."
arXiv preprint arXiv:1603.00831 (2016).
https://motchallenge.net/
Structure
---------
Layout for ground truth data
<GT_ROOT>/<SEQUENCE_1>/gt/gt.txt
<GT_ROOT>/<SEQUENCE_2>/gt/gt.txt
...
Layout for test data
<TEST_ROOT>/<SEQUENCE_1>.txt
<TEST_ROOT>/<SEQUENCE_2>.txt
...
Sequences of ground truth and test will be matched according to the `<SEQUENCE_X>`
string.""", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('groundtruths', type=str, help='Directory containing ground truth files.')
parser.add_argument('tests', type=str, help='Directory containing tracker result files')
parser.add_argument('--loglevel', type=str, help='Log level', default='info')
parser.add_argument('--fmt', type=str, help='Data format', default='mot15-2D')
parser.add_argument('--solver', type=str, help='LAP solver to use')
return parser.parse_args()
def compare_dataframes(gts, ts):
accs = []
names = []
for k, tsacc in ts.items():
if k in gts:
logging.info('Comparing {}...'.format(k))
accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
names.append(k)
else:
logging.warning('No ground truth for {}, skipping.'.format(k))
return accs, names
if __name__ == '__main__':
args = parse_args()
loglevel = getattr(logging, args.loglevel.upper(), None)
if not isinstance(loglevel, int):
raise ValueError('Invalid log level: {} '.format(args.loglevel))
logging.basicConfig(level=loglevel, format='%(asctime)s %(levelname)s - %(message)s', datefmt='%I:%M:%S')
if args.solver:
mm.lap.default_solver = args.solver
gtfiles = glob.glob(os.path.join(args.groundtruths, '*/gt/gt.txt'))
tsfiles = [f for f in glob.glob(os.path.join(args.tests, '*.txt')) if not os.path.basename(f).startswith('eval')]
logging.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles)))
logging.info('Available LAP solvers {}'.format(mm.lap.available_solvers))
logging.info('Default LAP solver \'{}\''.format(mm.lap.default_solver))
logging.info('Loading files.')
gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt=args.fmt, min_confidence=1)) for f in gtfiles])
ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt=args.fmt)) for f in tsfiles])
mh = mm.metrics.create()
accs, names = compare_dataframes(gt, ts)
logging.info('Running metrics')
summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
str_summary = mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names)
print(str_summary)
# print to text file
with open(os.path.join(args.tests, "mot_metrics.log"), mode="w") as text_file:
print(str_summary, file=text_file)
# save dataframe to pickle file
pickle.dump(summary, open(os.path.join(args.tests, "mot_metrics.pkl"), "wb"))
logging.info('Completed')