-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha4_NeuralNetworks.py
209 lines (192 loc) · 8.96 KB
/
a4_NeuralNetworks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import random
import tensorflow as tf
from tensorflow.keras import metrics as Metrics
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Fix randomness
random.seed(1234)
np.random.seed(1234)
class Prob1():
def __init__(self, info):
self.info = info
self.n_finegrid = info['n_finegrid']
self.part = info['part']
# Square bounds for each part
if self.part == "A":
self.bounds = np.array([[-4, -1, 3, 0],
[-2, 1, -1, -4],
[2, 5, 1, -2]])
elif self.part == "B":
self.bounds = np.array([[-4, -3, 3, 2],
[-1, 0, -2, -3],
[2, 3, 0, -1]])
self.num_epochs = info['num_epochs']
self.batch_size = info['batch_size']
self.final_results = {}
def generate_data(self):
"""
Generate data --> random points with noisy class labels
"""
# Both dims
x1 = np.random.uniform(-6, 6 + 1e-10, self.n).reshape(self.n, 1)
x2 = np.random.uniform(-4, 4 + 1e-10, self.n).reshape(self.n, 1)
self.x_data = np.concatenate((x1, x2), axis=1)
y = []
for i in range(self.n):
inSquare = False
for pt in range(self.bounds.shape[0]):
if self.bounds[pt, 0] < x1[i, 0] < self.bounds[pt, 1] and self.bounds[pt, 3] < x2[i, 0] < self.bounds[pt, 2]:
# Within a square
inSquare = True
if random.random() > 0.97:
# Incorrectly labeles as -
y.append(0)
else:
# Correctly labeled as +
y.append(1)
if inSquare is False:
# Not within a square
if random.random() > 0.01:
# Correctly labeled as -
y.append(0)
else:
# Incorrectly labeled as +
y.append(1)
self.y_data = np.array(y).reshape(self.n, 1)
self.all_data = np.concatenate((self.x_data, self.y_data), axis=1)
return self.x_data, self.y_data
def generate_finegrid_data(self):
"""
Finegrid data. No noise class labels
"""
x1 = np.random.uniform(-6, 6 + 1e-10, self.n_finegrid).reshape(self.n_finegrid, 1)
x2 = np.random.uniform(-4, 4 + 1e-10, self.n_finegrid).reshape(self.n_finegrid, 1)
self.x_data_finegrid = np.concatenate((x1, x2), axis=1)
y = []
for i in range(self.n_finegrid):
inSquare = False
for pt in range(self.bounds.shape[0]):
if self.bounds[pt, 0] < x1[i, 0] < self.bounds[pt, 1] and self.bounds[pt, 3] < x2[i, 0] < self.bounds[pt, 2]:
# Within a square
inSquare = True
y.append(1)
if inSquare is False:
y.append(0)
self.y_data_finegrid = np.array(y).reshape(self.n_finegrid, 1)
self.all_data_finegrid = np.concatenate((self.x_data_finegrid, self.y_data_finegrid), axis=1)
return self.x_data_finegrid, self.y_data_finegrid
def split_data(self):
"""
Split data in to test and train
"""
indexes = np.arange(self.all_data.shape[0])
np.random.shuffle(indexes)
self.num_train = int(0.7*self.x_data.shape[0])
self.train_data = self.all_data[indexes[:self.num_train], :]
self.test_data = self.all_data[indexes[self.num_train:], :]
self.x_train = self.train_data[:, [0, 1]]
self.y_train = self.train_data[:, 2]
self.x_test = self.test_data[:, [0, 1]]
self.y_test = self.test_data[:, 2]
def regularize(self):
"""
Regularize data
"""
self.x_data[:, 0] /= 6
self.x_data[:, 1] /= 6
def calculate_balanced_acc(self, FN, FP, TN, TP):
"""
Balanced ACC calculation
"""
sensitivity = TP/(TP+FN)
specificity = TN/(TN+FP)
return (sensitivity + specificity)/2
def NN(self, h1, h2):
"""
Neural network method. Creates neural network with certain sized layers (3 or 4).
"""
if h2 == 0:
model = Sequential()
model.add(Dense(h1, input_shape=(2,), activation=tf.keras.activations.tanh))
model.add(Dense(1, activation=tf.keras.activations.tanh))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy',
tf.keras.metrics.AUC(),
tf.keras.metrics.FalseNegatives(),
tf.keras.metrics.FalsePositives(),
tf.keras.metrics.TrueNegatives(),
tf.keras.metrics.TruePositives()])
model.fit(self.x_train, self.y_train, epochs=self.num_epochs, batch_size=self.batch_size)
_, class_accuracy, auc, FN, FP, TN, TP = model.evaluate(self.x_test, self.y_test) #batch_size=self.x_test.shape[0]
balanced_acc = self.calculate_balanced_acc(FN, FP, TN, TP)
_, true_performance, _, _, _, _, _ = model.evaluate(self.x_data_finegrid, self.y_data_finegrid, batch_size=self.x_data_finegrid.shape[0])
else:
model = Sequential()
model.add(Dense(h1, input_shape=(2,), activation=tf.keras.activations.tanh))
model.add(Dense(h2, activation=tf.keras.activations.tanh))
model.add(Dense(1, activation=tf.keras.activations.tanh))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy',
tf.keras.metrics.AUC(),
tf.keras.metrics.FalseNegatives(),
tf.keras.metrics.FalsePositives(),
tf.keras.metrics.TrueNegatives(),
tf.keras.metrics.TruePositives()])
model.fit(self.x_train, self.y_train, epochs=self.num_epochs, batch_size=self.batch_size)
_, class_accuracy, auc, FN, FP, TN, TP = model.evaluate(self.x_test, self.y_test) #batch_size=self.x_test.shape[0]
balanced_acc = self.calculate_balanced_acc(FN, FP, TN, TP)
_, true_performance, _, _, _, _, _ = model.evaluate(self.x_data_finegrid, self.y_data_finegrid, batch_size=self.x_data_finegrid.shape[0])
return (class_accuracy, balanced_acc, auc, true_performance)
def save_data(self, results, h1, h2):
"""
Save results for certain network dimensions
"""
class_accuracy, balanced_acc, auc, true_performance = results
name = str(self.n) + "_" + str(h1) + "_" + str(h2)
self.final_results.update({name: [class_accuracy, balanced_acc, auc, true_performance]})
def display_data(self):
"""
Print data for final report
"""
print("\n\n=========================")
print("===== FINAL RESULTS =====")
print("=========================")
for k, v in self.final_results.items():
n = k.split('_')[0]
h1 = k.split('_')[1]
h2 = k.split('_')[2]
print(f"N: {n}, H1: {h1}, H2: {h2}")
print(f"\tClassification Accuracy: {round(v[0]*100, 2)}%")
print(f"\tBalanced Accuracy: {round(v[1]*100, 2)}%")
print(f"\tROC AUC Estimate: {round(v[2], 3)}")
print(f"\tTrue Performance: {round(v[3]*100, 2)}%\n")
def run(self):
"""
Run everything
"""
x_fg, y_fg, = self.generate_finegrid_data()
for n in [250, 1_000, 10_000]:
self.n = n
x, y = self.generate_data()
self.split_data()
for h1 in [1, 4, 12]:
for h2 in [0, 3]:
results = self.NN(h1, h2)
self.save_data(results, h1, h2)
print("\n\n==========================================")
print(f"===== DONE WITH N: {n} H1: {h1} H2: {h2}")
print("==========================================\n\n")
self.display_data()
# Run Part A
params = {"n_finegrid": 1_000_000,
"part": "A",
"num_epochs": 150,
"batch_size": 32}
prob = Prob1(params)
prob.run()
# Run Part B
params = {"n_finegrid": 1_000_000,
"part": "B",
"num_epochs": 150,
"batch_size": 32}
prob = Prob1(params)
prob.run()