-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmain.py
163 lines (137 loc) · 5.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math
import subprocess
import sys
from pathlib import Path
import numpy as np
import torch
from nerf.provider_image import NeRFDataset as ImageOnlyNeRFDataset
from nerf.provider_synthetic import NeRFDataset as SyntheticNeRFDataset
from nerf.utils import seed_everything, setup_distributed_print
from nerf.trainer import Trainer
from nerf.options import Options
from sd import StableDiffusion, StableDiffusionModel, add_tokens_to_model_from_path
def main():
# I love lovely_tensors
import lovely_tensors
lovely_tensors.monkey_patch()
# Arguments
opt = Options().parse_args()
seed_everything(opt.seed)
print(opt)
Path(opt.workspace).mkdir(exist_ok=(opt.ckpt != 'scratch'), parents=True)
opt.save(str(Path(opt.workspace) / 'config.json'))
(Path(opt.workspace) / 'command.txt').write_text(subprocess.list2cmdline(sys.argv[1:]))
# Save and print config
setup_distributed_print(True)
# Create model
if opt.backbone == 'grid':
from nerf.network_grid import NeRFNetwork
else:
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
model = NeRFNetwork(opt)
print(model)
# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Create loaders for synthetic data
train_loader = SyntheticNeRFDataset(
opt, device=device, type='train', H=opt.HW_synthetic, W=opt.HW_synthetic, size=100
).dataloader()
val_loader = SyntheticNeRFDataset(
opt, device=device, type='val', H=opt.HW_vis, W=opt.HW_vis, size=5
).dataloader()
vis_loader = SyntheticNeRFDataset(
opt, device=device, type='test', H=opt.HW_vis, W=opt.HW_vis, size=100
).dataloader()
test_loader = SyntheticNeRFDataset(
opt, device=device, type='test', H=opt.HW_vis, W=opt.HW_vis, size=100
).dataloader()
# Create loaders for real data
real_train_loader = ImageOnlyNeRFDataset(
opt, device=device, type='train', H=opt.HW_real, W=opt.HW_real, size=1
).dataloader()
real_train_full_image_loader = ImageOnlyNeRFDataset(
opt, device=device, type='train', H=opt.HW_real, W=opt.HW_real, size=1, force_test_mode=True
).dataloader()
real_val_loader = ImageOnlyNeRFDataset(
opt, device=device, type='val', H=opt.HW_real, W=opt.HW_real, size=8, load_image=False
).dataloader()
real_test_loader = ImageOnlyNeRFDataset(
opt, device=device, type='test', H=opt.HW_real, W=opt.HW_real, size=8, load_image=False
).dataloader()
# Dataset length
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
# Testing
if opt.test:
# Create loaders to sample camera views for testing and reconstruction
test_loader = SyntheticNeRFDataset(opt, device=device, type='test', H=opt.HW_vis, W=opt.HW_vis, size=100).dataloader()
# Create trainer
trainer = Trainer(
name='df',
opt=opt,
model=model,
guidance=None,
metrics=[],
device=device,
workspace=opt.workspace,
fp16=opt.fp16,
use_checkpoint=opt.ckpt
)
# Setup
trainer.prepare_for_reconstruction(real_train_loader, real_train_full_image_loader, real_val_loader, real_test_loader)
else:
# Stable diffusion guidance
stable_diffusion_model = StableDiffusionModel.from_pretrained(opt.pretrained_model_name_or_path)
if opt.learned_embeds_path is not None: # add textual inversion tokens to model
add_tokens_to_model_from_path(
opt.learned_embeds_path, stable_diffusion_model.text_encoder, stable_diffusion_model.tokenizer
)
guidance = StableDiffusion(stable_diffusion_model=stable_diffusion_model, device=device)
# Scheduler
if opt.lr_warmup == 'vanilla':
warm_up_with_cosine_lr = lambda iter: iter / opt.warm_iters if iter <= opt.warm_iters else max(0.5 *
(math.cos((iter - opt.warm_iters) /(opt.iters - opt.warm_iters) * math.pi) + 1), opt.min_lr / opt.lr)
scheduler = lambda optimizer: torch.optim.lr_scheduler.LambdaLR(optimizer, warm_up_with_cosine_lr)
else:
scheduler = lambda optimizer: torch.optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1)
# Optimizer
if opt.optim == 'adan':
# Note: Adan usually requires a larger LR
from optimizer import Adan
optimizer = lambda model: Adan(model.get_params(5 * opt.lr), eps=1e-8, weight_decay=2e-5, max_grad_norm=5.0, foreach=False)
else: # adamw
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
# Logging
if opt.wandb:
import wandb
wandb.init(
project='realfusion', name=Path(opt.workspace).name, job_type='train',
config=opt, save_code=True, sync_tensorboard=True,
)
# Create and prepare trainer
trainer = Trainer(
name='df',
opt=opt,
model=model,
guidance=guidance,
metrics=[],
device=device,
workspace=opt.workspace,
optimizer=optimizer,
ema_decay=opt.ema_decay,
fp16=opt.fp16,
lr_scheduler=scheduler,
use_checkpoint=opt.ckpt,
eval_interval=opt.eval_interval,
scheduler_update_every_step=True
)
# Setup
trainer.prepare_for_reconstruction(real_train_loader, real_train_full_image_loader, real_val_loader, real_test_loader)
trainer.check_prompt()
# Train
trainer.train(train_loader, val_loader, vis_loader, max_epoch)
# Test
trainer.test(test_loader, name=opt.save_test_name)
if opt.save_mesh:
trainer.save_mesh(resolution=256)
if __name__ == '__main__':
main()