From 2c64beb5eb7c0026eb69837287587a6f37e283f8 Mon Sep 17 00:00:00 2001 From: Lev Kozlov Date: Sun, 15 Sep 2024 06:32:55 -0400 Subject: [PATCH] Feature: MJX convert functions (#8) * dump * feat: tuned optax to solve logchol * dump * fix: remove WIP examples * fix: bump version --- mujoco_sysid/mjx/convert.py | 133 ++++++++++++++++++++++++++++++++++++ mujoco_sysid/regressors.py | 2 +- pyproject.toml | 2 +- tests/test_dynamics.py | 6 ++ 4 files changed, 141 insertions(+), 2 deletions(-) create mode 100644 mujoco_sysid/mjx/convert.py diff --git a/mujoco_sysid/mjx/convert.py b/mujoco_sysid/mjx/convert.py new file mode 100644 index 0000000..d7a38c9 --- /dev/null +++ b/mujoco_sysid/mjx/convert.py @@ -0,0 +1,133 @@ +import jax.numpy as np + + +def theta2pseudo(theta: np.ndarray) -> np.ndarray: + m = theta[0] + h = theta[1:4] + I_xx, I_xy, I_yy, I_xz, I_yz, I_zz = theta[4:] + + I_bar = np.array([[I_xx, I_xy, I_xz], [I_xy, I_yy, I_yz], [I_xz, I_yz, I_zz]]) + + Sigma = 0.5 * np.trace(I_bar) * np.eye(3) - I_bar + + pseudo_inertia = np.zeros((4, 4)) + pseudo_inertia = pseudo_inertia.at[:3, :3].set(Sigma) + pseudo_inertia = pseudo_inertia.at[:3, 3].set(h) + pseudo_inertia = pseudo_inertia.at[3, :3].set(h) + pseudo_inertia = pseudo_inertia.at[3, 3].set(m) + + return pseudo_inertia + + +def pseudo2theta(pseudo_inertia: np.ndarray) -> np.ndarray: + m = pseudo_inertia[3, 3] + h = pseudo_inertia[:3, 3] + Sigma = pseudo_inertia[:3, :3] + + I_bar = np.trace(Sigma) * np.eye(3) - Sigma + + I_xx = I_bar[0, 0] + I_xy = I_bar[0, 1] + I_yy = I_bar[1, 1] + I_xz = I_bar[0, 2] + I_yz = I_bar[1, 2] + I_zz = I_bar[2, 2] + + theta = np.array([m, h[0], h[1], h[2], I_xx, I_xy, I_yy, I_xz, I_yz, I_zz]) + + return theta + + +def logchol2chol(log_cholesky): + alpha, d1, d2, d3, s12, s23, s13, t1, t2, t3 = log_cholesky + + exp_alpha = np.exp(alpha) + exp_d1 = np.exp(d1) + exp_d2 = np.exp(d2) + exp_d3 = np.exp(d3) + + U = np.zeros((4, 4)) + U = U.at[0, 0].set(exp_d1) + U = U.at[0, 1].set(s12) + U = U.at[0, 2].set(s13) + U = U.at[0, 3].set(t1) + U = U.at[1, 1].set(exp_d2) + U = U.at[1, 2].set(s23) + U = U.at[1, 3].set(t2) + U = U.at[2, 2].set(exp_d3) + U = U.at[2, 3].set(t3) + U = U.at[3, 3].set(1) + + U *= exp_alpha + + return U + + +def chol2logchol(U: np.ndarray) -> np.ndarray: + alpha = np.log(U[3, 3]) + d1 = np.log(U[0, 0] / U[3, 3]) + d2 = np.log(U[1, 1] / U[3, 3]) + d3 = np.log(U[2, 2] / U[3, 3]) + s12 = U[0, 1] / U[3, 3] + s23 = U[1, 2] / U[3, 3] + s13 = U[0, 2] / U[3, 3] + t1 = U[0, 3] / U[3, 3] + t2 = U[1, 3] / U[3, 3] + t3 = U[2, 3] / U[3, 3] + return np.array([alpha, d1, d2, d3, s12, s23, s13, t1, t2, t3]) + + +def logchol2theta(log_cholesky: np.ndarray) -> np.ndarray: + alpha, d1, d2, d3, s12, s23, s13, t1, t2, t3 = log_cholesky + + exp_d1 = np.exp(d1) + exp_d2 = np.exp(d2) + exp_d3 = np.exp(d3) + + theta = np.array( + [ + 1, + t1, + t2, + t3, + s23**2 + t2**2 + t3**2 + exp_d2**2 + exp_d3**2, + -s12 * exp_d2 - s13 * s23 - t1 * t2, + s12**2 + s13**2 + t1**2 + t3**2 + exp_d1**2 + exp_d3**2, + -s13 * exp_d3 - t1 * t3, + -s23 * exp_d3 - t2 * t3, + s12**2 + s13**2 + s23**2 + t1**2 + t2**2 + exp_d1**2 + exp_d2**2, + ] + ) + + exp_2_alpha = np.exp(2 * alpha) + theta *= exp_2_alpha + + return theta + + +def pseudo2cholesky(pseudo_inertia: np.ndarray) -> np.ndarray: + n = pseudo_inertia.shape[0] + indices = np.arange(n - 1, -1, -1) + + reversed_inertia = pseudo_inertia[indices][:, indices] + + L_prime = np.linalg.cholesky(reversed_inertia) + + U = L_prime[indices][:, indices] + + return U + + +def cholesky2pseudo(U: np.ndarray) -> np.ndarray: + return U @ U.T + + +def pseudo2logchol(pseudo_inertia: np.ndarray) -> np.ndarray: + U = pseudo2cholesky(pseudo_inertia) + logchol = chol2logchol(U) + return logchol + + +def theta2logchol(theta: np.ndarray) -> np.ndarray: + pseudo_inertia = theta2pseudo(theta) + return pseudo2logchol(pseudo_inertia) diff --git a/mujoco_sysid/regressors.py b/mujoco_sysid/regressors.py index 183a5b4..25927f6 100644 --- a/mujoco_sysid/regressors.py +++ b/mujoco_sysid/regressors.py @@ -111,7 +111,7 @@ def joint_body_regressor(mj_model, mj_data, body_id) -> npt.ArrayLike: def get_jacobian(mjmodel, mjdata, bodyid): R = mjdata.xmat[bodyid].reshape(3, 3) - jac_lin, jac_rot = np.zeros((3, 6)), np.zeros((3, 6)) + jac_lin, jac_rot = np.zeros((3, mjmodel.nv)), np.zeros((3, mjmodel.nv)) mujoco.mj_jacBody(mjmodel, mjdata, jac_lin, jac_rot, bodyid) return np.vstack([R.T @ jac_lin, R.T @ jac_rot]) diff --git a/pyproject.toml b/pyproject.toml index 0fc3099..e02964b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,7 +1,7 @@ [project] name = "mujoco_sysid" description = "MuJoCo System Identification tools" -version = "0.2.0" +version = "0.2.1" authors = [ { name = "Lev Kozlov", email = "kozlov.l.a10@gmail.com" }, { name = "Simeon Nedelchev", email = "simkaned@gmail.com" }, diff --git a/tests/test_dynamics.py b/tests/test_dynamics.py index ed8b452..b2d2081 100644 --- a/tests/test_dynamics.py +++ b/tests/test_dynamics.py @@ -2,6 +2,7 @@ import numpy as np from mujoco_sysid import regressors +from mujoco_sysid import parameters from mujoco_sysid.utils import muj2pin np.random.seed(0) @@ -104,6 +105,8 @@ def test_joint_torque_regressor(): SAMPLES = 10000 + theta = np.concatenate([parameters.get_dynamic_parameters(mjmodel, i) for i in mjmodel.jnt_bodyid]) + for _ in range(SAMPLES): q, v, dv = np.random.rand(pinmodel.nq), np.random.rand(pinmodel.nv), np.random.rand(pinmodel.nv) pin.rnea(pinmodel, pindata, q, v, dv) @@ -117,6 +120,9 @@ def test_joint_torque_regressor(): pinY = pin.computeJointTorqueRegressor(pinmodel, pindata, q, v, dv) mjY = regressors.joint_torque_regressor(mjmodel, mjdata) + tau = pin.rnea(pinmodel, pindata, q, v, dv) + + assert np.allclose(mjY @ theta, tau, atol=1e-6), f"Norm diff: {np.linalg.norm(mjY @ theta - tau)}" assert np.allclose(mjY, pinY, atol=1e-6), f"Norm diff: {np.linalg.norm(mjY - pinY)}"