This repository was archived by the owner on Nov 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFiniteAutomatonMatcher.cpp
85 lines (77 loc) · 2.55 KB
/
FiniteAutomatonMatcher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
//
// algorithm - some algorithms in "Introduction to Algorithms", third edition
// Copyright (C) 2018 lxylxy123456
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
#ifndef MAIN
#define MAIN
#define MAIN_FiniteAutomatonMatcher
#endif
#ifndef FUNC_FiniteAutomatonMatcher
#define FUNC_FiniteAutomatonMatcher
#include "utils.h"
#include "NaiveStringMatcher.cpp"
template <typename T>
void FiniteAutomatonMatcher(const std::vector<T>& S,
const std::vector<std::vector<size_t>>& delta,
T o, std::vector<size_t>& ans) {
size_t n = S.size(), m = delta.size() - 1;
size_t q = 0;
for (size_t i = 0; i < n; i++) {
q = delta[q][S[i] - o];
if (q == m)
ans.push_back(i - m + 1);
}
}
template <typename T>
void ComputeTransitionFunction(const std::vector<T>& P, size_t d, T o,
std::vector<std::vector<size_t>>& delta) {
size_t m = P.size();
for (size_t q = 0; q <= m; q++) {
delta.push_back(std::vector<size_t>());
for (size_t a = 0; a <= d; a++) {
size_t k = std::min(m, q + 1);
while (k && (P[k-1] - o != (T) a || !equal(P, 0, P, q - k+1, k-1)))
k--;
delta[q].push_back(k);
}
}
}
#endif
#ifdef MAIN_FiniteAutomatonMatcher
int main(int argc, char *argv[]) {
const size_t n = get_argv(argc, argv, 1, 40);
const size_t m = get_argv(argc, argv, 2, 3);
const size_t d = get_argv(argc, argv, 3, 2);
const size_t compute = get_argv(argc, argv, 4, 1);
std::vector<char> S, P;
random_integers<char>(S, 'a', 'a' + d, n);
random_integers<char>(P, 'a', 'a' + d, m);
output_integers(S, "");
output_integers(P, "");
std::vector<std::vector<size_t>> delta;
ComputeTransitionFunction(P, d, 'a', delta);
std::vector<size_t> ans;
FiniteAutomatonMatcher(S, delta, 'a', ans);
output_integers(ans);
if (compute) {
std::vector<size_t> ans1;
NaiveStringMatcher(S, P, ans1);
output_integers(ans1);
std::cout << std::boolalpha << (ans == ans1) << std::endl;
}
return 0;
}
#endif