This repository was archived by the owner on Nov 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathJohnson.cpp
90 lines (83 loc) · 2.75 KB
/
Johnson.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
//
// algorithm - some algorithms in "Introduction to Algorithms", third edition
// Copyright (C) 2018 lxylxy123456
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
#ifndef MAIN
#define MAIN
#define MAIN_Johnson
#endif
#ifndef FUNC_Johnson
#define FUNC_Johnson
#include "utils.h"
#include "SquareMatrixMultiply.cpp"
#include "Dijkstra.cpp"
template <typename GT, typename T, typename WT>
Matrix<Weight<WT>> Johnson(GT& G, umap_WT& w) {
static_assert(std::is_same<T, size_t>::value, "Only supports T = size_t");
const size_t n = G.V.size();
T s;
GT G_prime = G;
umap_WT w_prime = w;
for (s = n; G.V.find(s) != G.V.end(); s++);
for (auto i = G.V.begin(); i != G.V.end(); i++) {
G_prime.add_edge(s, *i);
w_prime[Edge<T>(s, *i, G.dir)] = 0;
}
umap<T, RelaxInfo<T, WT>> BF_ans;
assert(BellmanFord(G_prime, w_prime, s, BF_ans));
umap<T, WT> h;
for (auto i = G.V.begin(); i != G.V.end(); i++) {
const T& v = *i;
assert(!BF_ans[v].d.inf);
h[v] = BF_ans[v].d.val;
}
umap_WT w_hat;
for (auto i = G.all_edges(); !i.end(); i++)
w_hat[*i] = w[*i] + h[i.s()] - h[i.d()];
Matrix<Weight<WT>> D(n, n, WT());
for (auto i = G.V.begin(); i != G.V.end(); i++) {
const T& u = *i;
umap<T, RelaxInfo<T, WT>> D_ans;
Dijkstra(G, w_hat, u, D_ans);
for (auto j = G.V.begin(); j != G.V.end(); j++) {
const T& v = *j;
D[u][v] = D_ans[v].d + h[v] - h[u];
}
}
return D;
}
#endif
#ifdef MAIN_Johnson
int main(int argc, char *argv[]) {
const size_t v = get_argv(argc, argv, 1, 5);
const size_t e = get_argv(argc, argv, 2, 10);
const bool dir = get_argv<int>(argc, argv, 3, 1);
const int weight_lower = get_argv<int>(argc, argv, 4, (0-e) / 4);
const int weight_upper = get_argv<int>(argc, argv, 5, e);
GraphAdjList<size_t> G(dir);
random_graph(G, v, e);
umap<Edge<size_t>, int, EdgeHash<size_t>> w;
random_weight(G, w, weight_lower, weight_upper);
Matrix<Weight<int>> ans = Johnson(G, w);
auto f1 = [](size_t v) { return false; };
auto f2 = [w](Edge<size_t> e) mutable {
std::cout << " [label=\"" << w[e] << "\"]";
};
graphviz(G, f1, f2);
std::cout << ans << std::endl;
return 0;
}
#endif