This repository was archived by the owner on Nov 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMatVec.cpp
117 lines (106 loc) · 3.06 KB
/
MatVec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
//
// algorithm - some algorithms in "Introduction to Algorithms", third edition
// Copyright (C) 2018 lxylxy123456
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
#ifndef MAIN
#define MAIN
#define MAIN_MatVec
#endif
#ifndef FUNC_MatVec
#define FUNC_MatVec
#include <thread>
#include "utils.h"
#include "SquareMatrixMultiply.cpp"
template <typename T, typename F>
void parallel_for(T i1, T i2, F func) {
if (i1 == i2 - 1)
func(i1);
else {
T mid = (i1 + i2) / 2;
std::thread t1(parallel_for<T, F>, i1, mid, func);
parallel_for<T, F>(mid, i2, func);
t1.join();
}
}
template <typename T>
void MatVecMainLoop(Matrix<T>* A, Matrix<T>* x, Matrix<T>* y, size_t n,
size_t i1, size_t i2) {
if (i1 == i2 - 1)
for (size_t j = 0; j < n; j++)
(*y)[i1][0] += (*A)[i1][j] * (*x)[j][0];
else {
size_t mid = (i1 + i2) / 2;
std::thread t1(MatVecMainLoop<T>, A, x, y, n, i1, mid);
MatVecMainLoop(A, x, y, n, mid, i2);
t1.join();
}
}
template <typename T>
void MatVecRecursive(Matrix<T>& A, Matrix<T>& x, Matrix<T>& y) {
size_t n = A.rows;
MatVecMainLoop(&A, &x, &y, n, 0, n);
}
template <typename T>
void MatVec(Matrix<T>& A, Matrix<T>& x, Matrix<T>& y) {
size_t n = A.rows;
parallel_for<size_t>(0, n, [&](size_t i){
for (size_t j = 0; j < n; j++)
y[i][0] += A[i][j] * x[j][0];
});
}
template <typename T>
void MatVecWrong(Matrix<T>& A, Matrix<T>& x, Matrix<T>& y) {
size_t n = A.rows;
parallel_for<size_t>(0, n, [&](size_t i){
parallel_for<size_t>(0, n, [&](size_t j){
y[i][0] += A[i][j] * x[j][0];
});
});
}
#endif
#ifdef MAIN_MatVec
int main(int argc, char *argv[]) {
size_t n = get_argv(argc, argv, 1, 10);
size_t compute = get_argv(argc, argv, 2, 7);
std::vector<int> buf_A, buf_x;
random_integers(buf_A, 0, n, n * n);
random_integers(buf_x, 0, n, n);
Matrix<int> A(n, n, buf_A);
Matrix<int> x(n, 1, buf_x);
std::cout << A << std::endl;
std::cout << x << std::endl;
Matrix<int> y1(n, 1, 0), y2(n, 1, 0), y3(n, 1, 0);
if (compute >> 0 & 1) {
MatVec(A, x, y1);
std::cout << y1 << std::endl;
}
if (compute >> 1 & 1) {
MatVecRecursive(A, x, y2);
std::cout << y2;
if (compute >> 0 & 1)
std::cout << std::boolalpha << (y1 == y2) << std::endl;
std::cout << std::endl;
}
if (compute >> 2 & 1) {
MatVecWrong(A, x, y3);
std::cout << y3;
if (compute >> 0 & 1)
std::cout << std::boolalpha << (y1 == y3) << std::endl;
std::cout << std::endl;
}
return 0;
}
#endif