This repository was archived by the owner on Nov 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPseudoprime.cpp
54 lines (47 loc) · 1.57 KB
/
Pseudoprime.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
//
// algorithm - some algorithms in "Introduction to Algorithms", third edition
// Copyright (C) 2018 lxylxy123456
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
#ifndef MAIN
#define MAIN
#define MAIN_Pseudoprime
#endif
#ifndef FUNC_Pseudoprime
#define FUNC_Pseudoprime
#include "utils.h"
#include "ModularExponentiation.cpp"
template <typename T>
bool Pseudoprime(T n) {
if (ModularExponentiation((T) 2, n - 1, n) != 1)
return false;
else
return true;
}
#endif
#ifdef MAIN_Pseudoprime
int main(int argc, char *argv[]) {
const size_t nn = get_argv(argc, argv, 1, 30);
const size_t tries = get_argv(argc, argv, 2, 1);
using T = long long int;
std::random_device rd;
std::uniform_int_distribution<T> dis(1 << (nn - 1), 1 << nn);
for (size_t i = 0; i < tries; i++) {
T n = get_argv(argc, argv, 3 + i, dis(rd) << 1 | 1);
std::cout << n << "\t" << std::boolalpha << Pseudoprime(n) << std::endl;
}
return 0;
}
#endif