-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathTrain.py
205 lines (165 loc) · 8.54 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torch.nn.init as init
import torch.utils.data as data
import torch.utils.data.dataset as dataset
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.autograd import Variable
import torchvision.utils as v_utils
import matplotlib.pyplot as plt
from tqdm.autonotebook import tqdm
from torch.utils.tensorboard import SummaryWriter
import cv2
import math
from collections import OrderedDict
import copy
import time
import data.utils as data_utils
import models.loss as loss
import utils
from models import AutoEncoderCov3D, AutoEncoderCov3DMem
import argparse
print("--------------PyTorch VERSION:", torch.__version__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("..............device", device)
parser = argparse.ArgumentParser(description="MemoryNormality")
parser.add_argument('--gpus', nargs='+', type=str, help='gpus')
parser.add_argument('--batch_size', type=int, default=12, help='batch size for training')
parser.add_argument('--epochs', type=int, default=80, help='number of epochs for training')
parser.add_argument('--val_epoch', type=int, default=2, help='evaluate the model every %d epoch')
parser.add_argument('--h', type=int, default=256, help='height of input images')
parser.add_argument('--w', type=int, default=256, help='width of input images')
parser.add_argument('--c', type=int, default=1, help='channel of input images')
parser.add_argument('--lr', type=float, default=2e-4, help='initial learning rate')
parser.add_argument('--t_length', type=int, default=16, help='length of the frame sequences')
parser.add_argument('--ModelName', help='AE/MemAE', type=str, default='MemAE')
parser.add_argument('--ModelSetting', help='Conv3D/Conv3DSpar',type=str, default='Conv3DSpar') # give the layer details later
parser.add_argument('--MemDim', help='Memory Dimention', type=int, default=2000)
parser.add_argument('--EntropyLossWeight', help='EntropyLossWeight', type=float, default=0.0002)
parser.add_argument('--ShrinkThres', help='ShrinkThres', type=float, default=0.0025)
parser.add_argument('--Suffix', help='Suffix', type=str, default='Non')
parser.add_argument('--num_workers', type=int, default=4, help='number of workers for the train loader')
parser.add_argument('--num_workers_test', type=int, default=1, help='number of workers for the test loader')
parser.add_argument('--dataset_type', type=str, default='ped2', help='type of dataset: ped2, avenue, shanghai')
parser.add_argument('--dataset_path', type=str, default='./dataset/', help='directory of data')
parser.add_argument('--exp_dir', type=str, default='log', help='directory of log')
parser.add_argument('--version', type=int, default=0, help='experiment version')
args = parser.parse_args()
torch.manual_seed(2020)
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
def arrange_image(im_input):
im_input = np.transpose(im_input, (0, 2, 1, 3, 4))
b, t, ch, h, w = im_input.shape
im_input = np.reshape(im_input, [b * t, ch, h, w])
return im_input
train_folder, test_folder = data_utils.give_data_folder(args.dataset_type,
args.dataset_path)
print("The training path", train_folder)
print("The testing path", test_folder)
frame_trans = data_utils.give_frame_trans(args.dataset_type, [args.h, args.w])
train_dataset = data_utils.DataLoader(train_folder, frame_trans, time_step=args.t_length - 1, num_pred=1)
test_dataset = data_utils.DataLoader(test_folder, frame_trans, time_step=args.t_length - 1, num_pred=1)
train_batch = data.DataLoader(train_dataset, batch_size = args.batch_size,
shuffle=True, num_workers=args.num_workers, drop_last=True)
test_batch = data.DataLoader(test_dataset, batch_size = args.batch_size,
shuffle=False, num_workers=args.num_workers, drop_last=True)
print("Training data shape", len(train_batch))
print("Validation data shape", len(test_batch))
# Model setting
if (args.ModelName == 'AE'):
model = AutoEncoderCov3D(args.c)
elif(args.ModelName=='MemAE'):
model = AutoEncoderCov3DMem(args.c, args.MemDim, shrink_thres=args.ShrinkThres)
else:
model = []
print('Wrong Name.')
model = model.to(device)
parameter_list = [p for p in model.parameters() if p.requires_grad]
for name, p in model.named_parameters():
if not p.requires_grad:
print("---------NO GRADIENT-----", name)
optimizer = torch.optim.Adam(parameter_list, lr = args.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[40], gamma=0.2) # version 2
#scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max =args.epochs)
# Report the training process
log_dir = os.path.join(args.exp_dir, args.dataset_type, 'lr_%.5f_entropyloss_%.5f_version_%d' % (
args.lr, args.EntropyLossWeight, args.version))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
orig_stdout = sys.stdout
f = open(os.path.join(log_dir, 'log.txt'),'w')
sys.stdout= f
for arg in vars(args):
print(arg, getattr(args, arg))
train_writer = SummaryWriter(log_dir=log_dir)
# warmup
model.train()
with torch.no_grad():
for batch_idx, frame in enumerate(train_batch):
frame = frame.reshape([args.batch_size, args.t_length, args.c, args.h, args.w])
frame = frame.permute(0, 2, 1, 3, 4)
frame = frame.to(device)
model_output = model(frame)
# Training
for epoch in range(args.epochs):
model.train()
tr_re_loss, tr_mem_loss, tr_tot = 0.0, 0.0, 0.0
progress_bar = tqdm(train_batch)
for batch_idx, frame in enumerate(progress_bar):
progress_bar.update()
frame = frame.reshape([args.batch_size, args.t_length, args.c, args.h, args.w])
frame = frame.permute(0, 2, 1, 3, 4)
frame = frame.to(device)
optimizer.zero_grad()
model_output = model(frame)
recons, attr = model_output['output'], model_output['att']
re_loss = loss.get_reconstruction_loss(frame, recons, mean=0.5, std=0.5)
mem_loss = loss.get_memory_loss(attr)
tot_loss = re_loss + mem_loss * args.EntropyLossWeight
tr_re_loss += re_loss.data.item()
tr_mem_loss += mem_loss.data.item()
tr_tot += tot_loss.data.item()
tot_loss.backward()
optimizer.step()
train_writer.add_scalar("model/train-recons-loss", tr_re_loss/len(train_batch), epoch)
train_writer.add_scalar("model/train-memory-sparse", tr_mem_loss/len(train_batch), epoch)
train_writer.add_scalar("model/train-total-loss", tr_tot/len(train_batch), epoch)
scheduler.step()
current_lr = optimizer.param_groups[0]['lr']
train_writer.add_scalar('learning_rate', current_lr, epoch)
if epoch % args.val_epoch == 0:
model.eval()
re_loss_val, mem_loss_val = 0.0, 0.0
for batch_idx, frame in enumerate(test_batch):
frame = frame.reshape([args.batch_size, args.t_length, args.c, args.h, args.w])
frame = frame.permute(0, 2, 1, 3, 4)
frame = frame.to(device)
model_output = model(frame)
recons, attr = model_output['output'], model_output['att']
re_loss = loss.get_reconstruction_loss(frame, recons, mean=0.5, std=0.5)
mem_loss = loss.get_memory_loss(attr)
re_loss_val += re_loss.data.item()
mem_loss_val += mem_loss.data.item()
if batch_idx == len(test_batch) - 1:
_input_npy = frame.detach().cpu().numpy()
_input_npy = _input_npy * 0.5 + 0.5
_recons_npy = recons.detach().cpu().numpy()
_recons_npy = _recons_npy * 0.5 + 0.5 # [batch_size, ch, time, imh, imw]
train_writer.add_images("image/input_image", arrange_image(_input_npy), epoch)
train_writer.add_images("image/reconstruction", arrange_image(_recons_npy), epoch)
train_writer.add_scalar("model/val-recons-loss", re_loss_val / len(test_batch), epoch)
train_writer.add_scalar("model/val-memory-sparse", mem_loss_val / len(test_batch), epoch)
print("epoch %d" % epoch, "recons loss training %.4f validation %.4f" % (tr_re_loss, re_loss_val),
"memory sparsity training %.4f validation %.4f" % (tr_mem_loss, mem_loss_val))
if epoch >= args.epochs - 50:
if epoch % 10 == 0 or epoch == args.epochs - 1:
torch.save(model.state_dict(), log_dir + "/model-{:04d}.pt".format(epoch))
sys.stdout = orig_stdout
f.close()