This repository has been archived by the owner on Oct 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibar2_hash.c
885 lines (761 loc) · 23.8 KB
/
libar2_hash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/* See LICENSE file for copyright and license details. */
#define WARN_UNKNOWN_ENDIAN
#include "common.h"
#include <stdatomic.h>
#if defined(__x86_64__)
# include <immintrin.h>
#endif
struct threaded_fill_segments_params {
struct block *memory;
const uint_least64_t *sbox;
struct libar2_argon2_parameters *params;
uint_least32_t seglen;
uint_least32_t lanelen;
uint_least32_t blocks;
uint_least32_t pass;
uint_least32_t lane;
uint_least32_t slice;
};
static const struct libblake_blake2b_params b2params = {
.digest_len = 64,
.key_len = 0,
.fanout = 1,
.depth = 1,
.leaf_len = 0,
.node_offset = 0,
.node_depth = 0,
.inner_len = 0
};
static const SIMD_ALIGNED struct block zerob; /* implicitly zeroed via `static` */
#if defined(__x86_64__) && defined(LIBAR2_TARGET__)
/* Relative, approximate, execution times for blockxor:
* Over large memory Repeatedly over one block
* plain old xor: 1 1
* _mm_xor_si128: 1.055 1.031 (removed becaused it's slow)
* _mm256_xor_si256: 0.828 0.514
* _mm512_xor_si512: I don't have the means to test this
*
* No difference noted between having a function pointer
* to the plain-old-xor version and just implementing it
* with a regular function.
*
* Similar performance is observed for blockxor3 and blockcpy
*/
LIBAR2_TARGET__("avx2")
static void
blockxor_avx2(struct block *a_, const struct block *b_)
{
__m256i *a = (__m256i *)a_;
const __m256i *b = (const __m256i *)b_;
size_t i;
for (i = 0; i < sizeof(*a_) / (256 / 8); i++)
a[i] = _mm256_xor_si256(a[i], b[i]);
}
/* $covered{$ (removing from coverage test because my machine does not spport AVX512F) */
LIBAR2_TARGET__("avx512f")
static void
blockxor_avx512f(struct block *a_, const struct block *b_)
{
__m512i *a = (__m512i *)a_;
const __m512i *b = (const __m512i *)b_;
size_t i;
for (i = 0; i < sizeof(*a_) / (512 / 8); i++)
a[i] = _mm512_xor_si512(a[i], b[i]);
}
/* $covered}$ */
static void
blockxor_vanilla(struct block *a, const struct block *b)
{
size_t i;
for (i = 0; i < ELEMSOF(a->w); i++)
a->w[i] ^= b->w[i];
}
static void (*blockxor)(struct block *a, const struct block *b) = &blockxor_vanilla;
LIBAR2_TARGET__("avx2")
static void
blockxor3_avx2(struct block *a_, const struct block *b_, const struct block *c_)
{
__m256i *a = (__m256i *)a_;
const __m256i *b = (const __m256i *)b_;
const __m256i *c = (const __m256i *)c_;
size_t i;
for (i = 0; i < sizeof(*a_) / (256 / 8); i++)
a[i] = _mm256_xor_si256(b[i], c[i]);
}
/* $covered{$ (removing from coverage test because my machine does not spport AVX512F) */
LIBAR2_TARGET__("avx512f")
static void
blockxor3_avx512f(struct block *a_, const struct block *b_, const struct block *c_)
{
__m512i *a = (__m512i *)a_;
const __m512i *b = (const __m512i *)b_;
const __m512i *c = (const __m512i *)c_;
size_t i;
for (i = 0; i < sizeof(*a_) / (512 / 8); i++)
a[i] = _mm512_xor_si512(b[i], c[i]);
}
/* $covered}$ */
static void
blockxor3_vanilla(struct block *a, const struct block *b, const struct block *c)
{
size_t i;
for (i = 0; i < ELEMSOF(a->w); i++)
a->w[i] = b->w[i] ^ c->w[i];
}
#define DEFINED_BLOCKXOR3
static void (*blockxor3)(struct block *a, const struct block *b, const struct block *c) = &blockxor3_vanilla;
LIBAR2_TARGET__("avx2")
static void
blockcpy_avx2(struct block *a_, const struct block *b_)
{
__m256i *a = (__m256i *)a_;
const __m256i *b = (const __m256i *)b_;
size_t i;
for (i = 0; i < sizeof(*a_) / (256 / 8); i++)
a[i] = _mm256_load_si256(&b[i]);
}
/* $covered{$ (removing from coverage test because my machine does not spport AVX512F) */
LIBAR2_TARGET__("avx512f")
static void
blockcpy_avx512f(struct block *a_, const struct block *b_)
{
__m512i *a = (__m512i *)a_;
const __m512i *b = (const __m512i *)b_;
size_t i;
for (i = 0; i < sizeof(*a_) / (512 / 8); i++)
a[i] = _mm512_load_si512(&b[i]);
}
/* $covered}$ */
static void
blockcpy_vanilla(struct block *a, const struct block *b)
{
size_t i;
for (i = 0; i < ELEMSOF(a->w); i++)
a->w[i] = b->w[i];
}
#define DEFINED_BLOCKCPY
static void (*blockcpy)(struct block *a, const struct block *b) = &blockcpy_vanilla;
#else
static void
blockxor(struct block *a, const struct block *b)
{
size_t i;
for (i = 0; i < ELEMSOF(a->w); i++)
a->w[i] ^= b->w[i];
}
#endif
static size_t
store32(unsigned char *out, uint_least32_t value)
{
out[0] = (unsigned char)((value >> 0) & 255);
out[1] = (unsigned char)((value >> 8) & 255);
out[2] = (unsigned char)((value >> 16) & 255);
out[3] = (unsigned char)((value >> 24) & 255);
return 4;
}
#ifndef USING_LITTLE_ENDIAN
static void
store64(unsigned char *out, uint_least64_t value)
{
out[0] = (unsigned char)((value >> 0) & 255);
out[1] = (unsigned char)((value >> 8) & 255);
out[2] = (unsigned char)((value >> 16) & 255);
out[3] = (unsigned char)((value >> 24) & 255);
out[4] = (unsigned char)((value >> 32) & 255);
out[5] = (unsigned char)((value >> 40) & 255);
out[6] = (unsigned char)((value >> 48) & 255);
out[7] = (unsigned char)((value >> 56) & 255);
}
static void
load64(uint_least64_t *out, const unsigned char *data)
{
*out = ((uint_least64_t)(data[0] & 255) << 0)
| ((uint_least64_t)(data[1] & 255) << 8)
| ((uint_least64_t)(data[2] & 255) << 16)
| ((uint_least64_t)(data[3] & 255) << 24)
| ((uint_least64_t)(data[4] & 255) << 32)
| ((uint_least64_t)(data[5] & 255) << 40)
| ((uint_least64_t)(data[6] & 255) << 48)
| ((uint_least64_t)(data[7] & 255) << 56);
}
static void
store_block(unsigned char *block8, const struct block *block64)
{
size_t i, j;
for (i = 0, j = 0; i < 1024; i += 8, j += 1)
store64(&block8[i], block64->w[j]);
}
static void
load_block(struct block *block64, const unsigned char *block8)
{
size_t i, j;
for (i = 0, j = 0; i < 1024; i += 8, j += 1)
load64(&block64->w[j], &block8[i]);
}
#endif
static size_t
storemem(unsigned char *out, const void *mem, size_t len, size_t max)
{
size_t n = MIN(len, max);
memcpy(out, mem, n);
return n;
}
static uint_least64_t
rotr64(uint_least64_t x, int n)
{
return ((x >> n) | (x << (64 - n))) & UINT_LEAST64_C(0xFFFFffffFFFFffff);
}
static uint_least64_t
fBlaMka(uint_least64_t x, uint_least64_t y)
{
return x + y + 2 * (x & UINT_LEAST64_C(0xFFffFFff)) * (y & UINT_LEAST64_C(0xFFffFFff));
}
static void
fill_block(struct block *block, const struct block *prevblock, const struct block *refblock,
int with_xor, const uint_least64_t *sbox)
{
uint_least64_t x = 0;
uint_least32_t x_hi, x_lo;
size_t i;
SIMD_ALIGNED struct block tmpblock;
#if defined(DEFINED_BLOCKXOR3) && defined(DEFINED_BLOCKCPY)
if (with_xor) {
blockxor3(&tmpblock, refblock, prevblock);
blockxor(block, &tmpblock);
} else {
blockxor3(&tmpblock, refblock, prevblock);
blockcpy(block, &tmpblock);
}
#else
if (with_xor) {
for (i = 0; i < ELEMSOF(refblock->w); i++)
block->w[i] ^= tmpblock.w[i] = refblock->w[i] ^ prevblock->w[i];
} else {
for (i = 0; i < ELEMSOF(refblock->w); i++)
block->w[i] = tmpblock.w[i] = refblock->w[i] ^ prevblock->w[i];
}
#endif
if (sbox) {
x = tmpblock.w[0] ^ tmpblock.w[ELEMSOF(tmpblock.w) - 1];
for (i = 0; i < 96; i++) {
x_hi = (uint_least32_t)(x >> 32);
x_lo = (uint_least32_t)x & UINT_LEAST32_C(0xFFFFffff);
x = (uint_least64_t)x_hi * (uint_least64_t)x_lo;
x += sbox[(x_hi & UINT_LEAST32_C(0x1FF)) + 0];
x ^= sbox[(x_lo & UINT_LEAST32_C(0x1FF)) + 512];
}
}
/* TODO optimise (also fBlaMka) once similar BLAKE2b code in libblake has been optimised { */
#define BLAMKA_G(A, B, C, D)\
A = fBlaMka(A, B);\
D = rotr64(D ^ A, 32);\
C = fBlaMka(C, D);\
B = rotr64(B ^ C, 24);\
A = fBlaMka(A, B);\
D = rotr64(D ^ A, 16);\
C = fBlaMka(C, D);\
B = rotr64(B ^ C, 63)
#define BLAMKA_ROUND(W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, WA, WB, WC, WD, WE, WF)\
BLAMKA_G(W0, W4, W8, WC);\
BLAMKA_G(W1, W5, W9, WD);\
BLAMKA_G(W2, W6, WA, WE);\
BLAMKA_G(W3, W7, WB, WF);\
BLAMKA_G(W0, W5, WA, WF);\
BLAMKA_G(W1, W6, WB, WC);\
BLAMKA_G(W2, W7, W8, WD);\
BLAMKA_G(W3, W4, W9, WE)
#define BLAMKA_ROUND_(ARR, OFF, W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, WA, WB, WC, WD, WE, WF)\
BLAMKA_ROUND(ARR[OFF + W0], ARR[OFF + W1], ARR[OFF + W2], ARR[OFF + W3],\
ARR[OFF + W4], ARR[OFF + W5], ARR[OFF + W6], ARR[OFF + W7],\
ARR[OFF + W8], ARR[OFF + W9], ARR[OFF + WA], ARR[OFF + WB],\
ARR[OFF + WC], ARR[OFF + WD], ARR[OFF + WE], ARR[OFF + WF])
for (i = 0; i < 8; i++) {
BLAMKA_ROUND_(tmpblock.w, i * 16,
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15);
}
for (i = 0; i < 8; i++) {
BLAMKA_ROUND_(tmpblock.w, i * 2,
0, 1, 16, 17,
32, 33, 48, 49,
64, 65, 80, 81,
96, 97, 112, 113);
}
/* } */
blockxor(block, &tmpblock);
block->w[0] += x;
block->w[ELEMSOF(block->w) - 1] += x;
block->w[0] &= UINT_LEAST64_C(0xFFFFffffFFFFffff);
block->w[ELEMSOF(block->w) - 1] &= UINT_LEAST64_C(0xFFFFffffFFFFffff);
}
static void
generate_sbox(uint_least64_t *sbox, struct block *memory)
{
void *next, *prev = memory;
size_t i;
for (i = 0; i < 8; i++) {
next = &sbox[i * 128];
fill_block(next, &zerob, prev, 0, NULL);
fill_block(next, &zerob, next, 0, NULL);
prev = next;
}
}
static void
next_address_block(struct block *addrb, struct block *inputb)
{
inputb->w[6] += 1;
fill_block(addrb, &zerob, inputb, 0, NULL);
fill_block(addrb, &zerob, addrb, 0, NULL);
}
static uint_least32_t
get_rindex(uint_least32_t seglen, uint_least32_t lanelen, uint_least32_t pass,
uint_least32_t slice, uint_least32_t index, uint_least64_t prand, int same_lane)
{
uint_least32_t size, startpos;
uint_least64_t relpos;
if (!pass) {
if (!slice)
size = index - 1;
else if (same_lane)
size = slice * seglen + index - 1;
else
size = slice * seglen - !index;
} else {
if (same_lane)
size = lanelen - seglen + index - 1;
else
size = lanelen - seglen - !index;
}
prand &= UINT_LEAST64_C(0xFFffFFff);
relpos = (prand * prand) >> 32;
relpos = ((uint_least64_t)size * relpos) >> 32;
relpos = (uint_least64_t)size - 1 - relpos;
startpos = pass ? slice == 3 ? 0 : (slice + 1) * seglen : 0;
return (startpos + (uint_least32_t)relpos) % lanelen;
}
static void
fill_segment(struct block *memory, const uint_least64_t *sbox, struct libar2_argon2_parameters *params,
uint_least32_t seglen, uint_least32_t lanelen, uint_least32_t blocks,
uint_least32_t pass, uint_least32_t lane, uint_least32_t slice)
{
int data_independent;
SIMD_ALIGNED struct block inputb, addrb;
uint_least32_t off, prevoff, rlane, rindex;
uint_least32_t index = 0, i;
uint_least64_t prand;
data_independent =
(params->type == LIBAR2_ARGON2I) ||
(params->type == LIBAR2_ARGON2ID && !pass && slice < 2);
if (data_independent) {
memset(&inputb.w[6], 0, sizeof(*inputb.w) * (ELEMSOF(inputb.w) - 6));
inputb.w[0] = pass;
inputb.w[1] = lane;
inputb.w[2] = slice;
inputb.w[3] = blocks;
inputb.w[4] = params->t_cost;
inputb.w[5] = (uint_least32_t)params->type;
if (!pass && !slice) {
next_address_block(&addrb, &inputb);
index = 2;
}
} else if (!pass && !slice) {
index = 2;
}
off = lane * lanelen + slice * seglen + index;
prevoff = off - 1 + (off % lanelen ? 0 : lanelen);
for (; index < seglen; index++, off++, prevoff++) {
if (off % lanelen == 1)
prevoff = off - 1;
if (data_independent) {
i = index % ELEMSOF(addrb.w);
if (!i)
next_address_block(&addrb, &inputb);
prand = addrb.w[i];
} else {
prand = memory[prevoff].w[0];
}
rlane = (!pass && !slice) ? lane : (uint_least32_t)(prand >> 32) % params->lanes;
rindex = get_rindex(seglen, lanelen, pass, slice, index, prand, rlane == lane);
fill_block(&memory[off], &memory[prevoff], &memory[rlane * lanelen + rindex],
params->version > LIBAR2_ARGON2_VERSION_10 && pass, sbox);
}
}
static void
threaded_fill_segment(void *data)
{
struct threaded_fill_segments_params *tparams = data;
fill_segment(tparams->memory, tparams->sbox, tparams->params,
tparams->seglen, tparams->lanelen, tparams->blocks,
tparams->pass, tparams->lane, tparams->slice);
}
static void
initial_hash(unsigned char hash[static 64], void *msg, size_t msglen,
struct libar2_argon2_parameters *params, struct libar2_context *ctx)
{
#define SEGMENT(DATA, LEN, OFF) &((const unsigned char *)(DATA))[(OFF)], (LEN) - (OFF)
struct libblake_blake2b_state state;
unsigned char block[128 + 3];
size_t n = 0, off;
libblake_blake2b_init(&state, &b2params);
n += store32(&block[n], params->lanes);
n += store32(&block[n], (uint_least32_t)params->hashlen);
n += store32(&block[n], params->m_cost);
n += store32(&block[n], params->t_cost);
n += store32(&block[n], (uint_least32_t)(params->version ? params->version : LIBAR2_ARGON2_VERSION_10));
n += store32(&block[n], (uint_least32_t)params->type);
n += store32(&block[n], (uint_least32_t)msglen);
if (msglen) {
n += off = storemem(&block[n], msg, msglen, 128 - n);
if (n == 128) {
libblake_blake2b_force_update(&state, block, n);
n = 0;
if (off < msglen) {
off += libblake_blake2b_force_update(&state, SEGMENT(msg, msglen, off));
memcpy(block, SEGMENT(msg, msglen, off));
n = msglen - off;
}
}
if (ctx->autoerase_message)
libar2_erase(msg, msglen);
}
n += store32(&block[n], (uint_least32_t)params->saltlen);
if (n >= 128) {
n -= libblake_blake2b_force_update(&state, block, n);
memcpy(block, &block[128], n); /* overlap is impossible */
}
if (params->saltlen) {
if (!n)
off = 0;
else
n += off = storemem(&block[n], params->salt, params->saltlen, 128 - n);
if (n == 128) {
libblake_blake2b_force_update(&state, block, n);
n = 0;
}
if (n == 0 && off < params->saltlen) {
off += libblake_blake2b_force_update(&state, SEGMENT(params->salt, params->saltlen, off));
memcpy(block, SEGMENT(params->salt, params->saltlen, off));
n = params->saltlen - off;
}
if (ctx->autoerase_salt)
libar2_erase(params->salt, params->saltlen);
}
n += store32(&block[n], (uint_least32_t)params->keylen);
if (n >= 128) {
n -= libblake_blake2b_force_update(&state, block, n);
memcpy(block, &block[128], n); /* overlap is impossible */
}
if (params->keylen) {
if (!n)
off = 0;
else
n += off = storemem(&block[n], params->key, params->keylen, 128 - n);
if (n == 128) {
libblake_blake2b_force_update(&state, block, n);
n = 0;
}
if (n == 0 && off < params->keylen) {
off += libblake_blake2b_force_update(&state, SEGMENT(params->key, params->keylen, off));
memcpy(block, SEGMENT(params->key, params->keylen, off));
n = params->keylen - off;
}
if (ctx->autoerase_secret)
libar2_erase(params->key, params->keylen);
}
n += store32(&block[n], (uint_least32_t)params->adlen);
if (n > 128 || (n == 128 && params->adlen)) {
n -= libblake_blake2b_force_update(&state, block, n);
memcpy(block, &block[128], n); /* overlap is impossible */
}
if (params->adlen) {
if (!n)
off = 0;
else
n += off = storemem(&block[n], params->ad, params->adlen, 128 - n);
if (off < params->adlen) {
if (n == 128) {
libblake_blake2b_force_update(&state, block, n);
n = 0;
}
if (n == 0) {
off += libblake_blake2b_update(&state, SEGMENT(params->ad, params->adlen, off));
if (params->adlen - off > 128) {
/* $covered{$ (not really possible, but just to be safe) */
off += libblake_blake2b_force_update(&state, SEGMENT(params->ad, params->adlen, off));
/* $covered}$ */
}
memcpy(block, SEGMENT(params->ad, params->adlen, off));
n = params->adlen - off;
}
}
if (ctx->autoerase_associated_data)
libar2_erase(params->ad, params->adlen);
}
libblake_blake2b_digest(&state, block, n, 0, 64, hash);
ERASE_ARRAY(block);
ERASE_STRUCT(state);
#undef SEGMENT
}
static void /* this is not BLAKE2Xb, but something Argon2-specific */
argon2_blake2b_exthash(void *hash_, size_t hashlen, void *msg_, size_t msglen)
{
struct libblake_blake2b_params params;
struct libblake_blake2b_state state;
unsigned char *msg = msg_;
unsigned char block[128];
unsigned char *hash = hash_;
size_t n, off;
params = b2params;
params.digest_len = (uint_least8_t)MIN(hashlen, (size_t)params.digest_len);
libblake_blake2b_init(&state, ¶ms);
n = store32(block, (uint_least32_t)hashlen);
n += off = storemem(&block[n], msg, msglen, 128 - n);
if (off == msglen) {
libblake_blake2b_digest(&state, block, n, 0, params.digest_len, hash);
} else {
libblake_blake2b_force_update(&state, block, 128);
libblake_blake2b_digest(&state, &msg[off], msglen - off, 0, params.digest_len, hash);
}
if (hashlen > 64) {
hashlen -= 32;
params.digest_len = 64;
while (hashlen > 64) {
libblake_blake2b_init(&state, ¶ms);
libblake_blake2b_digest(&state, hash, 64, 0, 64, &hash[32]);
hash += 32;
hashlen -= 32;
}
params.digest_len = (uint_least8_t)hashlen;
libblake_blake2b_init(&state, ¶ms);
libblake_blake2b_digest(&state, hash, 64, 0, hashlen, &hash[32]);
}
ERASE_STRUCT(state);
ERASE_ARRAY(block);
}
#if defined(__x86_64__) && defined(LIBAR2_TARGET__)
void
libar2_internal_use_generic__(void)
{
blockxor = &blockxor_vanilla;
blockxor3 = &blockxor3_vanilla;
blockcpy = &blockcpy_vanilla;
}
void
libar2_internal_use_sse2__(void)
{
libar2_internal_use_generic__();
}
void
libar2_internal_use_avx2__(void)
{
blockxor = &blockxor_avx2;
blockxor3 = &blockxor3_avx2;
blockcpy = &blockcpy_avx2;
}
void
libar2_internal_use_avx512f__(void)
{
blockxor = &blockxor_avx512f;
blockxor3 = &blockxor3_avx512f;
blockcpy = &blockcpy_avx512f;
}
#endif
LIBAR2_INITIALISER__ /* ignored if statically linked, so this function shall
* by the application, we just use the constructor (init)
* attribute in case that is forgotten, as it will only
* improve performance, but the library with function
* perfectly fine even if it's not called */
void
libar2_init(void)
{
#if defined(__x86_64__) && defined(LIBAR2_TARGET__)
static volatile int initialised = 0;
static volatile atomic_flag spinlock = ATOMIC_FLAG_INIT;
if (initialised)
return;
while (atomic_flag_test_and_set(&spinlock));
if (!initialised) {
# if 0
__builtin_cpu_init();
/* $covered{$ (we know that it works, but the test cannot enter every branch) */
if (__builtin_cpu_supports("avx512f"))
libar2_internal_use_avx512f__();
else if (__builtin_cpu_supports("avx2"))
libar2_internal_use_avx2__();
else if (__builtin_cpu_supports("sse2"))
libar2_internal_use_sse2__();
else
libar2_internal_use_generic__();
/* $covered}$ */
# else
uint32_t x;
__asm__ volatile("cpuid" : "=b"(x) : "a"(7), "c"(0) : "edx");
/* $covered{$ (we know that it works, but the test cannot enter every branch) */
if (x & ((uint32_t)1 << 16)) {
libar2_internal_use_avx512f__();
} else if (x & ((uint32_t)1 << 5)) {
libar2_internal_use_avx2__();
} else {
__asm__ volatile("cpuid" : "=d"(x) : "a"(1) : "ebx", "ecx");
if (x & ((uint32_t)1 << 26))
libar2_internal_use_sse2__();
else
libar2_internal_use_generic__();
}
/* $covered}$ */
# endif
initialised = 1;
}
atomic_flag_clear(&spinlock);
#endif
}
int
libar2_hash(void *hash, void *msg, size_t msglen, struct libar2_argon2_parameters *params, struct libar2_context *ctx)
{
#ifndef USING_LITTLE_ENDIAN
unsigned char block[1024 + 128];
#endif
_Alignas(4) unsigned char hash0[256];
uint_least32_t blocks, seglen, lanelen;
struct block *memory;
size_t i, p, s, nthreads, ts[16], ti, tn, bufsize;
struct threaded_fill_segments_params *tparams = NULL;
uint_least64_t *sbox = NULL; /* This is 8K large (assuming support for uint64_t), so we allocate it dynamically */
size_t alignment;
libar2_init();
if (libar2_validate_params(params, NULL) || msglen >> 31 > 1) {
errno = EINVAL;
return -1;
}
blocks = MAX(params->m_cost, 8 * params->lanes); /* 8 * params->lanes <= 0x07FFfff8 */
seglen = blocks / (4 * params->lanes);
blocks -= blocks % (4 * params->lanes);
lanelen = seglen * 4;
alignment = MAX(MAX(ALIGNOF(struct block), CACHE_LINE_SIZE), MAX_SIMD_ALIGNMENT);
#ifdef USING_LITTLE_ENDIAN
/* We are allocating one extra block, this gives use 1024 extra bytes,
* but we only need 128, to ensure that `argon2_blake2b_exthash` does
* not write on unallocated memory. Preferable we would just request
* 128 bytes bytes, but this would require an undesirable API/ABI
* change. */
memory = ctx->allocate(blocks + 1, sizeof(struct block), alignment, ctx);
#else
memory = ctx->allocate(blocks, sizeof(struct block), alignment, ctx);
#endif
if (!memory)
return -1;
if (params->type == LIBAR2_ARGON2DS) {
alignment = MAX(ALIGNOF(uint_least64_t), MAX_SIMD_ALIGNMENT);
sbox = ctx->allocate(1024, sizeof(*sbox), alignment, ctx);
if (!sbox) {
ctx->deallocate(memory, ctx);
return -1;
}
}
initial_hash(hash0, msg, msglen, params, ctx);
for (i = 0; i < params->lanes; i++) { /* direction is important for little-endian optimisation */
store32(&hash0[64], 0);
store32(&hash0[68], (uint_least32_t)i);
#ifdef USING_LITTLE_ENDIAN
argon2_blake2b_exthash(&memory[i * lanelen + 0], 1024, hash0, 72);
#else
argon2_blake2b_exthash(block, 1024, hash0, 72);
load_block(&memory[i * lanelen + 0], block);
#endif
store32(&hash0[64], 1);
#ifdef USING_LITTLE_ENDIAN
argon2_blake2b_exthash(&memory[i * lanelen + 1], 1024, hash0, 72);
#else
argon2_blake2b_exthash(block, 1024, hash0, 72);
load_block(&memory[i * lanelen + 1], block);
#endif
}
ERASE_ARRAY(hash0);
if (ctx->init_thread_pool(params->lanes, &nthreads, ctx))
goto fail;
if (nthreads == 1) {
nthreads = 0;
if (ctx->destroy_thread_pool(ctx))
goto fail;
}
if (!nthreads) {
for (p = 0; p < params->t_cost; p++) {
if (sbox)
generate_sbox(sbox, memory);
for (s = 0; s < 4; s++) {
for (i = 0; i < params->lanes; i++) {
fill_segment(memory, sbox, params, seglen, lanelen, blocks,
(uint_least32_t)p, (uint_least32_t)i, (uint_least32_t)s);
}
}
}
} else {
tparams = ctx->allocate(nthreads, sizeof(*tparams), ALIGNOF(struct threaded_fill_segments_params), ctx);
if (!tparams) {
ctx->destroy_thread_pool(ctx);
goto fail;
}
for (i = 0; i < nthreads; i++) {
tparams[i].memory = memory;
tparams[i].sbox = sbox;
tparams[i].params = params;
tparams[i].seglen = seglen;
tparams[i].lanelen = lanelen;
tparams[i].blocks = blocks;
}
for (p = 0; p < params->t_cost; p++) {
if (sbox)
generate_sbox(sbox, memory);
for (s = 0; s < 4; s++) {
ti = tn = 0;
for (i = 0; i < params->lanes; i++) {
if (ti == tn) {
tn = ctx->get_ready_threads(ts, ELEMSOF(ts), ctx);
if (!tn)
goto fail;
ti = 0;
}
tparams[ts[ti]].pass = (uint_least32_t)p;
tparams[ts[ti]].lane = (uint_least32_t)i;
tparams[ts[ti]].slice = (uint_least32_t)s;
if (ctx->run_thread(ts[ti], threaded_fill_segment, &tparams[ts[ti]], ctx))
goto fail;
ti++;
}
if (ctx->join_thread_pool(ctx))
goto fail;
}
}
if (ctx->destroy_thread_pool(ctx))
goto fail;
ctx->deallocate(tparams, ctx);
tparams = NULL;
}
for (i = 1; i < params->lanes; i++)
blockxor(&memory[lanelen - 1], &memory[i * lanelen + lanelen - 1]);
#ifdef USING_LITTLE_ENDIAN
argon2_blake2b_exthash(hash, params->hashlen, &memory[lanelen - 1], 1024);
#else
store_block(block, &memory[lanelen - 1]);
argon2_blake2b_exthash(hash, params->hashlen, block, 1024);
#endif
bufsize = libar2_hash_buf_size(params);
if (bufsize) /* should never be 0 as that would indicate the user provided a too small buffer */
libar2_erase(&((char *)hash)[params->hashlen], bufsize - params->hashlen);
#ifndef USING_LITTLE_ENDIAN
ERASE_ARRAY(block);
#endif
if (sbox)
ctx->deallocate(sbox, ctx);
ctx->deallocate(memory, ctx);
return 0;
fail:
if (tparams)
ctx->deallocate(tparams, ctx);
if (sbox)
ctx->deallocate(sbox, ctx);
ctx->deallocate(memory, ctx);
return -1;
}