-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathma1dcnn.py
165 lines (131 loc) · 4.58 KB
/
ma1dcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Pytorch implementation of MultiAttention 1D CNN (MA1DCNN)
Understanding and Learning Discriminant
Features based on Multiattention 1DCNN for
Wheelset Bearing Fault Diagnosis, Wang et al.
https://ieeexplore.ieee.org/document/8911240
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv1dSamePadding(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(Conv1dSamePadding, self).__init__()
self.stride = stride
self.kernel_size = kernel_size
self.width = in_channels
self.padding = self.calculate_padding()
self.conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size,
stride=stride)
def calculate_padding(self):
"""
W/S = (W-K+TP)/S+1 # new W bothers with stride
# solve for TP (total padding)
W/S-1 = (W-K+TP)/S
S(W/S-1) = W-K+TP
TP = S(W/S-1)-W+K
TP = W-S-W+K
TP = K-S
"""
# p = (self.kernel_size // 2 - 1) * self.stride + 1
# p = (self.stride * (self.width / self.stride - 1) - self.width + self.kernel_size) / 2
total_padding = max(0, self.kernel_size - self.stride)
p1 = total_padding // 2
p2 = total_padding - p1
return p1, p2
def forward(self, x):
x = F.pad(x, self.padding)
return self.conv_layer(x)
class CAM(nn.Module):
def __init__(self, num_filters):
super(CAM, self).__init__()
self.num_filters = num_filters
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.conv1 = nn.Conv1d(self.num_filters, self.num_filters // 2, 1, padding="same")
self.relu = nn.ReLU()
self.conv2 = nn.Conv1d(self.num_filters // 2, self.num_filters, 1, padding="same")
self.batchnorm = nn.BatchNorm1d(self.num_filters)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b1 = self.avgpool(x)
b1 = self.conv1(b1)
b1 = self.relu(b1)
b1 = self.conv2(b1)
b1 = self.batchnorm(b1)
b1 = self.sigmoid(b1)
b2 = torch.multiply(x, b1)
out = x + b2
return out
class EAM(nn.Module):
def __init__(self, num_filters, kernel_size):
super(EAM, self).__init__()
self.num_filters = num_filters
self.kernel_size = kernel_size
self.conv1 = nn.Conv1d(num_filters, 1, 1)
self.batchnorm = nn.BatchNorm1d(1)
self.sigmoid = nn.Sigmoid()
self.conv2 = nn.Conv1d(num_filters, num_filters, kernel_size, padding="same")
self.relu = nn.ReLU()
def forward(self, x):
b1 = self.conv1(x)
b1 = self.batchnorm(b1)
b1 = self.sigmoid(b1)
b2 = self.conv2(x)
b2 = self.relu(b2)
b3 = torch.multiply(b1, b2)
o = x + b3
return o
class MA1DCNN(nn.Module):
def __init__(self, num_classes, in_channels):
super(MA1DCNN, self).__init__()
self.num_classes = num_classes
self.conv1 = nn.Conv1d(in_channels, 32, 32, padding="same")
self.relu1 = nn.ReLU()
self.eam1 = EAM(32, 32)
self.cam1 = CAM(32)
self.conv2 = Conv1dSamePadding(32, 32, 16, stride=2)
self.relu2 = nn.ReLU()
self.eam2 = EAM(32, 16)
self.cam2 = CAM(32)
self.conv3 = Conv1dSamePadding(32, 64, 9, stride=2)
self.relu3 = nn.ReLU()
self.eam3 = EAM(64, 9)
self.cam3 = CAM(64)
self.conv4 = Conv1dSamePadding(64, 64, 6, stride=2)
self.relu4 = nn.ReLU()
self.eam4 = EAM(64, 6)
self.cam4 = CAM(64)
self.conv5 = Conv1dSamePadding(64, 128, 3, stride=4)
self.relu5 = nn.ReLU()
self.eam5 = EAM(128, 3)
self.cam5 = CAM(128)
self.conv6 = Conv1dSamePadding(128, 128, 3, stride=4)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.linear = nn.Linear(128, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.eam1(x)
x = self.cam1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.eam2(x)
x = self.cam2(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.eam3(x)
x = self.cam3(x)
x = self.conv4(x)
x = self.relu4(x)
x = self.eam4(x)
x = self.cam4(x)
x = self.conv5(x)
x = self.relu5(x)
x = self.eam5(x)
x = self.cam5(x)
x = self.conv6(x)
# x = torch.permute(x, (0, 2, 1))
x = self.avgpool(x)
x = torch.squeeze(x)
x = self.linear(x)
return F.log_softmax(x, dim=1)