-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHestonModel
54 lines (46 loc) · 1.67 KB
/
HestonModel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
from MonteCarlo import monte_carlo_simulation
class HestonMonteCarlo:
def __init__(self, kappa, theta, sigma, rho, v0, r=0.0):
self.kappa = kappa
self.theta = theta
self.sigma = sigma
self.rho = rho
self.v0 = v0
self.r = r
def simulate_paths(self, S0, T, dt, n_paths, n_steps):
paths = np.zeros((n_paths, n_steps + 1))
for i in range(n_paths):
# Initialize the path
paths[i, 0] = S0
v = self.v0
for t in range(1, n_steps + 1):
# Generate correlated Brownian motions
Z1 = np.random.normal(0, 1)
Z2 = self.rho * Z1 + np.sqrt(1 - self.rho ** 2) * np.random.normal(0, 1)
# Euler discretization for the stock price and volatility
paths[i, t] = paths[i, t - 1] * np.exp((self.r - 0.5 * v) * dt + np.sqrt(v * dt) * Z1)
v += self.kappa * (self.theta - v) * dt + self.sigma * np.sqrt(v * dt) * Z2
v = max(v, 0) # Ensure volatility is non-negative
return paths
# Example usage:
if __name__ == "__main__":
# Example parameters
kappa = 2.0
theta = 0.1
sigma = 0.3
rho = -0.7
v0 = 0.1
r = 0.05
S0 = 100.0
T = 1.0
dt = 1/252
n_paths = 1000
n_steps = int(T / dt)
# Create Heston model object
heston_model = HestonMonteCarlo(kappa, theta, sigma, rho, v0, r)
# Simulate paths
paths = heston_model.simulate_paths(S0, T, dt, n_paths, n_steps)
# Call monte_carlo_simulation from MonteCarlo.py
simulated_prices = monte_carlo_simulation(paths[:, -1], None, 100)
print(simulated_prices)