-
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
460 lines (352 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import argparse
import logging
import os
import sys
import numpy as np
import torch
from torch import optim
from tqdm import tqdm
from src import wb_net
import random
from src import ops
import torch.nn.functional as F
try:
from torch.utils.tensorboard import SummaryWriter
use_tb = True
except ImportError:
use_tb = False
from src import dataset
from torch.utils.data import DataLoader
def train_net(net, device, data_dir, val_dir=None, epochs=140,
batch_size=32, lr=0.001, l2reg=0.00001, grad_clip_value=0,
chkpoint_period=10, val_freq=1, smooth_weight=0.01,
multiscale=False, wb_settings=None, shuffle_order=True,
patch_number=12, optimizer_algo='Adam', max_tr_files=0,
max_val_files=0, patch_size=128, model_name='WB_model',
save_cp=True):
""" Trains a network and saves the trained model in harddisk.
"""
dir_checkpoint = 'checkpoints_model/' # check points directory
SMOOTHNESS_WEIGHT = smooth_weight
input_files = dataset.Data.load_files(data_dir)
random.shuffle(input_files)
if val_dir is not None:
val_files = dataset.Data.load_files(val_dir)
random.shuffle(val_files)
else:
val_ind = round(len(input_files) * 0.1)
val_files = input_files[: val_ind]
input_files = input_files[val_ind:]
if max_val_files > 0:
if max_val_files < len(val_files):
val_files = val_files[:max_val_files]
if max_tr_files > 0:
if max_tr_files < len(input_files):
input_files = input_files[:max_tr_files]
dataset.Data.assert_files(input_files, wb_settings=wb_settings)
dataset.Data.assert_files(val_files, wb_settings=wb_settings)
train_set = dataset.Data(input_files, patch_size=patch_size,
patch_number=patch_number, multiscale=multiscale,
shuffle_order=shuffle_order, wb_settings=wb_settings)
val_set = dataset.Data(val_files, patch_size=patch_size, patch_number=1,
shuffle_order=shuffle_order, wb_settings=wb_settings)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True,
num_workers=6, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=True,
num_workers=6, pin_memory=True)
if use_tb: # if TensorBoard is used
writer = SummaryWriter(log_dir='runs/' + model_name,
comment=f'LR_{lr}_BS_{batch_size}')
else:
writer = None
global_step = 0
logging.info(f'''Starting training:
Model Name: {model_name}
Epochs: {epochs}
WB Settings: {wb_settings}
Batch size: {batch_size}
Patch per image: {patch_number}
Patch size: {patch_size} x {patch_size}
Learning rate: {lr}
L2 reg. weight: {l2reg}
Smooth weight: {smooth_weight}
Validation Freq.: {val_freq}
Grad. clipping: {grad_clip_value}
Optimizer: {optimizer_algo}
Checkpoints: {save_cp}
Device: {device.type}
TensorBoard: {use_tb}
''')
if optimizer_algo == 'Adam':
optimizer = optim.Adam(net.parameters(), lr=lr, betas=(0.9, 0.999),
weight_decay=l2reg)
elif optimizer_algo == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=lr, weight_decay=l2reg)
else:
raise NotImplementedError
x_kernel, y_kernel = ops.get_sobel_kernel(device, chnls=len(wb_settings))
for epoch in range(epochs):
net.train()
epoch_loss = 0
epoch_smoothness_loss = 0
epoch_rec_loss = 0
with tqdm(total=len(train_set), desc=f'Epoch {epoch + 1} / {epochs}',
unit='img') as pbar:
for batch in train_loader:
img = batch['image']
img = img.to(device=device, dtype=torch.float32)
gt = batch['gt']
gt = gt.to(device=device, dtype=torch.float32)
rec_loss = 0
smoothness_loss = 0
for p in range(img.shape[1]):
patch = img[:, p, :, :, :]
gt_patch = gt[:, p, :, :, :]
result, weights = net(patch)
rec_loss += ops.compute_loss(result, gt_patch)
smoothness_loss += SMOOTHNESS_WEIGHT * (
torch.sum(F.conv2d(weights, x_kernel, stride=1) ** 2) +
torch.sum(F.conv2d(weights, y_kernel, stride=1) ** 2))
rec_loss = rec_loss / img.shape[1]
smoothness_loss = smoothness_loss / img.shape[1]
loss = rec_loss + smoothness_loss
py_loss = loss.item()
py_rec_loss = rec_loss.item()
py_smoothness_loss = smoothness_loss.item()
epoch_smoothness_loss += py_smoothness_loss
epoch_rec_loss += py_rec_loss
epoch_loss += py_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if grad_clip_value > 0:
torch.nn.utils.clip_grad_value_(net.parameters(), grad_clip_value)
if use_tb:
# for visualization
vis_weights = (weights - torch.min(weights)) / (
ops.EPS + torch.max(weights) - torch.min(weights))
writer.add_scalar('Loss/train', py_loss, global_step)
writer.add_scalar('Rec Loss/train', py_rec_loss, global_step)
writer.add_scalar('Smoothness Loss/train', py_smoothness_loss,
global_step)
writer.add_images('Input (1)', patch[:, 0:3, :, :], global_step)
writer.add_images('Weight (1)',
torch.unsqueeze(vis_weights[:, 0, :, :], dim=1),
global_step)
writer.add_images('Input (2)', patch[:, 3:6, :, :], global_step)
writer.add_images('Weight (2)',
torch.unsqueeze(vis_weights[:, 1, :, :], dim=1),
global_step)
writer.add_images('Input (3)', patch[:, 6:9, :, :], global_step)
writer.add_images('Weight (3)',
torch.unsqueeze(vis_weights[:, 2, :, :], dim=1),
global_step)
if vis_weights.shape[1] == 4:
writer.add_images('Input (4)', patch[:, 9:12, :, :], global_step)
writer.add_images('Weight (4)',
torch.unsqueeze(vis_weights[:, 3, :, :], dim=1),
global_step)
if vis_weights.shape[1] == 5:
writer.add_images('Input (4)', patch[:, 9:12, :, :], global_step)
writer.add_images('Weight (4)',
torch.unsqueeze(vis_weights[:, 3, :, :], dim=1),
global_step)
writer.add_images('Input (5)', patch[:, 12:, :, :], global_step)
writer.add_images('Weight (5)',
torch.unsqueeze(vis_weights[:, 4, :, :], dim=1),
global_step)
writer.add_images('Result', result, global_step)
writer.add_images('GT', gt_patch, global_step)
pbar.update(np.ceil(img.shape[0]))
pbar.set_postfix(**{'Total loss (batch)': py_loss},
**{'Rec. loss (batch)': py_rec_loss},
**{'Smoothness loss (batch)': py_smoothness_loss}
)
global_step += 1
epoch_loss = epoch_loss / (len(train_loader))
epoch_rec_loss = epoch_rec_loss / (len(train_loader))
epoch_smoothness_loss = epoch_smoothness_loss / (len(train_loader))
logging.info(f'{model_name} - Epoch loss: = {epoch_loss}, '
f'Rec. loss = {epoch_rec_loss}, '
f'Smoothness loss = {epoch_smoothness_loss}')
if (epoch + 1) % val_freq == 0:
logging.info('Validation...')
validation(net=net, loader=val_loader, writer=writer, step=global_step)
# save a checkpoint
if save_cp and (epoch + 1) % chkpoint_period == 0:
if not os.path.exists(dir_checkpoint):
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
torch.save(net.state_dict(), dir_checkpoint +
f'{model_name}_{epoch + 1}.pth')
logging.info(f'Checkpoint {epoch + 1} saved!')
# save final trained model
if not os.path.exists('models'):
os.mkdir('models')
logging.info('Created trained models directory')
torch.save(net.state_dict(), 'models/' + f'{model_name}.pth')
logging.info('Saved trained model!')
if use_tb:
writer.close()
logging.info('End of training')
def validation(net, loader, writer, step):
net.eval()
index = random.randint(0, len(loader) - 1)
val_loss = 0
for b, batch in enumerate(loader):
img = batch['image']
img = img[:, 0, :, :, :]
gt = batch['gt']
gt = gt[:, 0, :, :, :]
img = img.to(device=device, dtype=torch.float32)
gt = gt.to(device=device, dtype=torch.float32)
result, weights = net(img)
val_loss = ops.compute_loss(result, gt)
val_loss += val_loss.item()
if b == index and writer is not None:
# for visualization
vis_weights = (weights - torch.min(weights)) / (
ops.EPS + torch.max(weights) - torch.min(weights))
writer.add_images('Input (1) [val]', img[:, 0:3, :, :], step)
writer.add_images('Weight (1) [val]',
torch.unsqueeze(vis_weights[:, 0, :, :], dim=1),
step)
writer.add_images('Input (2) [val]', img[:, 3:6, :, :], step)
writer.add_images('Weight (2) [val]',
torch.unsqueeze(vis_weights[:, 1, :, :], dim=1),
step)
writer.add_images('Input (3) [val]', img[:, 6:, :, :], step)
writer.add_images('Weight (3) [val]',
torch.unsqueeze(vis_weights[:, 2, :, :], dim=1),
step)
if vis_weights.shape[1] == 4:
writer.add_images('Input (4) [val]', img[:, 9:12, :, :], step)
writer.add_images('Weight (4) [val]',
torch.unsqueeze(vis_weights[:, 3, :, :], dim=1),
step)
if vis_weights.shape[1] == 5:
writer.add_images('Input (4) [val]', img[:, 9:12, :, :], step)
writer.add_images('Weight (4) [val]',
torch.unsqueeze(vis_weights[:, 3, :, :], dim=1),
step)
writer.add_images('Input (5) [val]', img[:, 12:, :, :], step)
writer.add_images('Weight (5) [val]',
torch.unsqueeze(vis_weights[:, 4, :, :], dim=1),
step)
writer.add_images('Result [val]', result, step)
writer.add_images('GT [val]', gt, step)
print(f'Validation loss (batch): {val_loss / len(loader)}')
if writer is not None:
writer.add_scalar('Validation Loss', val_loss / len(loader), step)
net.train()
def get_args():
""" Gets command-line arguments.
Returns:
Return command-line arguments as a set of attributes.
"""
parser = argparse.ArgumentParser(description='Train WB Correction.')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=200,
help='Number of epochs', dest='epochs')
parser.add_argument('-s', '--patch-size', dest='patch_size', type=int,
default=64, help='Size of input training patches')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?',
default=8, help='Batch size', dest='batch_size')
parser.add_argument('-pn', '--patch-number', type=int, default=4,
help='number of patches per trainig image',
dest='patch_number')
parser.add_argument('-opt', '--optimizer', dest='optimizer', type=str,
default='Adam', help='Adam or SGD')
parser.add_argument('-mtf', '--max-tr-files', dest='max_tr_files', type=int,
default=0, help='max number of training files; default '
'is 0 which uses all files')
parser.add_argument('-mvf', '--max-val-files', dest='max_val_files', type=int,
default=0, help='max number of validation files; '
'default is 0 which uses all files')
parser.add_argument('-nrm', '--normalization', dest='norm', type=bool,
default=False,
help='Apply BN in network')
parser.add_argument('-msc', '--multi-scale', dest='multiscale', type=bool,
default=False,
help='Multi-scale training samples')
parser.add_argument('-lr', '--learning-rate', metavar='LR', type=float,
nargs='?', default=1e-4, help='Learning rate', dest='lr')
parser.add_argument('-l2r', '--l2reg', metavar='L2Reg', type=float,
nargs='?', default=0, help='L2 regularization factor',
dest='l2r')
parser.add_argument('-sw', '--smoothness-weight', dest='smoothness_weight',
type=float, default=100.0, help='smoothness weight')
parser.add_argument('-wbs', '--wb-settings', dest='wb_settings', nargs='+',
default=['D', 'S', 'T', 'F', 'C'])
parser.add_argument('-l', '--load', dest='load', type=bool, default=False,
help='Load model from a .pth file')
parser.add_argument('-so', '--shuffle-order', dest='shuffle_order',
type=bool, default=False,
help='Shuffle order of WB')
parser.add_argument('-ml', '--model-location', dest='model_location',
default=None)
parser.add_argument('-vf', '--validation-frequency', dest='val_freq',
type=int, default=1, help='Validation frequency.')
parser.add_argument('-cpf', '--checkpoint-frequency', dest='cp_freq',
type=int, default=1, help='Checkpoint frequency.')
parser.add_argument('-gc', '--grad-clip-value', dest='grad_clip_value',
type=float, default=0, help='Gradient clipping value; '
'if = 0, no clipping applied')
parser.add_argument('-trd', '--training-dir', dest='trdir',
default='./data/images/',
help='Training directory')
parser.add_argument('-valdir', '--validation-dir', dest='valdir',
default=None, help='Main validation directory')
parser.add_argument('-g', '--gpu', dest='gpu', default=0, type=int)
parser.add_argument('-mn', '--model-name', dest='model_name', type=str,
default='WB_model', help='Model name')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
logging.info('Training Mixed-Ill WB correction')
args = get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cpu':
torch.cuda.set_device(args.gpu)
logging.info(f'Using device {device}')
net = wb_net.WBnet(device=device, norm=args.norm, inchnls=3 * len(
args.wb_settings))
if args.load:
net.load_state_dict(
torch.load(args.model_location, map_location=device)
)
logging.info(f'Model loaded from {args.model_location}')
net.to(device=device)
postfix = f'_p_{args.patch_size}'
if args.norm:
postfix += f'_w_BN'
if args.shuffle_order:
postfix += f'_w_shuffling'
if args.smoothness_weight == 0:
postfix += f'_wo_smoothing'
for wb_setting in args.wb_settings:
postfix += f'_{wb_setting}'
model_name = args.model_name + postfix
try:
train_net(net=net, device=device, data_dir=args.trdir,
patch_number=args.patch_number,
multiscale=args.multiscale,
smooth_weight=args.smoothness_weight,
max_tr_files=args.max_tr_files,
max_val_files=args.max_val_files,
wb_settings=args.wb_settings,
shuffle_order=args.shuffle_order,
epochs=args.epochs,
batch_size=args.batch_size, lr=args.lr,
l2reg=args.l2r,
optimizer_algo=args.optimizer,
grad_clip_value=args.grad_clip_value,
chkpoint_period=args.cp_freq,
val_freq=args.val_freq, patch_size=args.patch_size,
model_name=model_name)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'wb_correction_intrrupted_check_point.pth')
logging.info('Saved interrupt checkpoint backup')
try:
sys.exit(0)
except SystemExit:
os._exit(0)