-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwine.r
196 lines (172 loc) · 6.49 KB
/
wine.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
library(copent) # Copula Entropy
library(energy) # Distance Correlation
library(dHSIC) # Hilbert-Schmidt Independence Criterion
library(HHG) # Heller-Heller-Gorfine Tests of Independence
library(independence) # Hoeffding's D test or Bergsma-Dassios T* sign covariance
library(Ball) # Ball correlation
library(qad) # Quantification of Asymmetric Dependence
library(BET) # Binary Expansion Testing
library(MixedIndTests) # Cramer-von Mises statistics
library(NNS) # Nonlinear Nonparametric Statistics
library(subcopem2D) # supremum dependence
library(EDMeasure) # Mutual Independence Measure
library(FOCI) # Dependence Coefficient
library(corrplot)
library(mnormt)
# red1 = read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv",sep = ";")
wine1 = as.matrix(read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv",sep = ";"))
n = dim(wine1)[1]
d = dim(wine1)[2] -1
ce = rep(0,d)
ktau = rep(0,d) # Kendall's tau
dcor = rep(0,d) # Distance Correlation
dhsic = rep(0,d) # Hilbert-Schmidt Independence Criterion
hhg1 = rep(0,d) # Heller-Heller-Gorfine Tests, Pearson chi-squared statistic
hhg2 = rep(0,d) # Heller-Heller-Gorfine Tests, likelihood ratio statistic
ind = rep(0,d) # Hoeffding's D test
bdtau = rep(0,d) # Bergsma-Dassios T* sign covariance
ball = rep(0,d) # Ball correlation
qad = rep(0,d) # Quantification of Asymmetric Dependence
bet = rep(0,d) # Binary Expansion Testing
mixed = rep(0,d) # Cramer-von Mises statistics
nns = rep(0,d) # Nonlinear Nonparametric Statistics
subcop = rep(0,d) #supremum dependence
mdm = rep(0,d) # mutual independence measure
codec = rep(0,d) # dependence coefficient
l = 500
for (i in 1:d){
x = wine1[1:l,c(i,12)]
for(k in 1:20){
x1 = x
x1[,1] = x1[,1] + runif(l) * 0.0000001 * max(abs(x[,1]))
x1[,2] = x1[,2] + runif(l) * 0.0000001 * max(abs(x[,2]))
ce[i] = ce[i] + copent(x1)/20
}
ktau[i] = cor(x, method = "kendall")[1,2]
dcor[i] = dcor(x[,1],x[,2])
dhsic[i] = dhsic(x[,1],x[,2])$dHSIC
Dx = as.matrix(dist((x[,1]), diag = TRUE, upper = TRUE))
Dy = as.matrix(dist((x[,2]), diag = TRUE, upper = TRUE))
hhg = hhg.test(Dx,Dy, nr.perm = 500)
hhg1[i] = hhg$sum.chisq
hhg2[i] = hhg$sum.lr
ind[i] = hoeffding.D.test(x[,1],x[,2])$Dn
bdtau[i] = tau.star.test(x[,1],x[,2])$Tn
ball[i] = bcor(x[,1],x[,2])
qad[i] = qad(x[,1],x[,2])$`q(X,Y)`
bet[i] = MaxBET(as.matrix(x), 3, index = list(1,2))$z.statistic
mixed[i] = TestIndCopula(x)$stat$cvm
nns[i] = NNS.dep(x[,1],x[,2])$Dependence
subcop[i] = dependence(x)[1,2,2]
mdm[i] = mdc(x[,1],x[,2])
codec[i] = codec(x[,1],x[,2])
}
#joint
joint1 = cbind(ce,ktau,dcor,dhsic,hhg1,hhg2,ind,bdtau,ball,qad,bet,mixed,subcop,mdm,codec,nns)
x11()
corrplot(cor(joint1), method = "shade", order = "hclust", col = COL2(n=200))
# normalization
normalize <- function(x){ xn = (x-x[1])/(x[11]-x[1]) }
ce1 = normalize(ce)
ktau1 = normalize(ktau)
dcor1 = normalize(dcor)
dhsic1 = normalize(dhsic)
hhg1a = normalize(hhg1)
hhg2a = normalize(hhg2)
ind1 = normalize(ind)
bdtau1 = normalize(bdtau)
ball1 = normalize(ball)
qad1 = normalize(qad)
bet1 = normalize(bet)
mixed1 = normalize(mixed)
subcop1 = normalize(subcop)
mdm1 = normalize(mdm)
codec1 = normalize(codec)
nns1 = normalize(nns)
all1 = rbind(ce1,ktau1,dcor1,dhsic1,hhg1a,hhg2a,ind1,bdtau1,ball1,qad1,bet1,mixed1,subcop1,mdm1,codec1,nns1)
x11(width = 10, height = 6)
col1 = rainbow(16)
plot(ce1, xlab = "", ylab = "", ylim = c(-2,4), col = col1[1], xaxt = "n", pch = 1); lines(ce1, col = col1[1])
points(ktau1, col = col1[2], pch = 2); lines(ktau1, col = col1[2])
points(dcor1, col = col1[3], pch = 3); lines(dcor1, col = col1[3])
points(dhsic1, col = col1[4], pch = 4); lines(dhsic1, col = col1[4])
points(hhg1a, col = col1[5], pch = 5); lines(hhg1a, col = col1[5])
points(hhg2a, col = col1[6], pch = 6); lines(hhg2a, col = col1[6])
points(ind1, col = col1[7], pch = 7); lines(ind1, col = col1[7])
points(bdtau1, col = col1[8], pch = 8); lines(bdtau1, col = col1[8])
points(ball1, col = col1[9], pch = 9); lines(ball1, col = col1[9])
points(qad1, col = col1[10], pch = 10); lines(qad1, col = col1[10])
points(bet1, col = col1[11], pch = 11); lines(bet1, col = col1[11])
points(mixed1, col = col1[12], pch = 12); lines(mixed1, col = col1[12])
points(subcop1, col = col1[13], pch = 13); lines(subcop1, col = col1[13])
points(mdm1, col = col1[14], pch = 14); lines(mdm1, col = col1[14])
points(codec1, col = col1[15], pch = 15); lines(codec1, col = col1[15])
points(nns1, col = col1[16], pch = 16); lines(nns1, col = col1[16])
legend(0.65,4,legend = c("CE","Ktau","dCor","dHSIC","HHG.chisq","HHG.lr","Hoeff","BDtau","Ball","QAD","BET","mixed","subcop","MDM","CODEC","NNS"),
col = col1, pch = 1:16, horiz = T, cex = 0.46, box.col = "white")
axis(1, at = 1:11, labels = FALSE) # colnames(wine1)[1:11], cex = 0.46)
text(1:11+0.15, par("usr")[3] - 0.18, labels = colnames(wine1)[1:11], srt = 45, pos = 2, xpd = TRUE, cex = 0.75)
#### plot
# ce
x11(width = 5, height = 5)
plot(ce, xlab = "rho", ylab = "Copula Entropy")
lines(ce)
# kendall's tau
x11(width = 5, height = 5)
plot(ktau, xlab = "rho", ylab = "Kendall's tau", xaxt = 'n')
lines(ktau)
# dcor
x11(width = 5, height = 5)
plot(dcor, xlab = "rho", ylab = "dCor", xaxt = 'n')
lines(dcor)
# dhsic
x11(width = 5, height = 5)
plot(dhsic, xlab = "rho", ylab = "dHSIC", xaxt = 'n')
lines(dhsic)
# hhg
x11(width = 5, height = 5)
plot(hhg1, xlab = "rho", ylab = "HHG.chisquared", xaxt = 'n')
lines(hhg1)
x11(width = 5, height = 5)
plot(hhg2, xlab = "rho", ylab = "HHG.lr", xaxt = 'n')
lines(hhg2)
# independence
x11(width = 5, height = 5)
plot(ind, xlab = "rho", ylab = "Hoeffding", xaxt = 'n')
lines(ind)
# BD tau
x11(width = 5, height = 5)
plot(bdtau, xlab = "rho", ylab = "BD tau", xaxt = 'n')
lines(bdtau)
# ball
x11(width = 5, height = 5)
plot(ball, xlab = "rho", ylab = "Ball", xaxt = 'n')
lines(ball)
# qad
x11(width = 5, height = 5)
plot(qad, xlab = "rho", ylab = "qad", xaxt = 'n')
lines(qad)
# BET
x11(width = 5, height = 5)
plot(bet, xlab = "rho", ylab = "BET", xaxt = 'n')
lines(bet)
# MixedIndCopula
x11(width = 5, height = 5)
plot(mixed, xlab = "rho", ylab = "Mixed", xaxt = 'n')
lines(mixed)
# NNS
x11(width = 5, height = 5)
plot(nns, xlab = "rho", ylab = "NNS", xaxt = 'n')
lines(nns)
# subcop
x11(width = 5, height = 5)
plot(subcop, xlab = "rho", ylab = "subcop", xaxt = 'n')
lines(subcop)
# mdm
x11(width = 5, height = 5)
plot(mdm, xlab = "rho", ylab = "MDC", xaxt = 'n')
lines(mdm)
# CODEC
x11(width = 5, height = 5)
plot(codec, xlab = "rho", ylab = "CODEC", xaxt = 'n')
lines(codec)