forked from aws/sagemaker-python-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjumpstart_builder.py
534 lines (461 loc) · 20.7 KB
/
jumpstart_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import
import copy
from abc import ABC, abstractmethod
from datetime import datetime, timedelta
from typing import Type, Any, List, Dict, Optional
import logging
from sagemaker.model import Model
from sagemaker import model_uris
from sagemaker.serve.model_server.djl_serving.prepare import prepare_djl_js_resources
from sagemaker.serve.model_server.djl_serving.utils import _get_admissible_tensor_parallel_degrees
from sagemaker.serve.model_server.tgi.prepare import prepare_tgi_js_resources, _create_dir_structure
from sagemaker.serve.mode.function_pointers import Mode
from sagemaker.serve.utils.exceptions import (
LocalDeepPingException,
LocalModelOutOfMemoryException,
LocalModelInvocationException,
LocalModelLoadException,
SkipTuningComboException,
)
from sagemaker.serve.utils.predictors import (
DjlLocalModePredictor,
TgiLocalModePredictor,
)
from sagemaker.serve.utils.local_hardware import (
_get_nb_instance,
_get_ram_usage_mb,
)
from sagemaker.serve.utils.telemetry_logger import _capture_telemetry
from sagemaker.serve.utils.tuning import (
_pretty_print_results_jumpstart,
_serial_benchmark,
_concurrent_benchmark,
_more_performant,
_sharded_supported,
)
from sagemaker.serve.utils.types import ModelServer
from sagemaker.base_predictor import PredictorBase
from sagemaker.jumpstart.model import JumpStartModel
_DJL_MODEL_BUILDER_ENTRY_POINT = "inference.py"
_NO_JS_MODEL_EX = "HuggingFace JumpStart Model ID not detected. Building for HuggingFace Model ID."
_JS_SCOPE = "inference"
_CODE_FOLDER = "code"
_JS_ENABLED_MODEL_SERVERS = {
ModelServer.DJL_SERVING,
ModelServer.TGI,
}
logger = logging.getLogger(__name__)
class JumpStart(ABC):
"""DJL build logic for ModelBuilder()"""
def __init__(self):
self.model = None
self.serve_settings = None
self.sagemaker_session = None
self.model_path = None
self.dependencies = None
self.modes = None
self.mode = None
self.model_server = None
self.image_uri = None
self._is_custom_image_uri = False
self.vpc_config = None
self._original_deploy = None
self.secret_key = None
self.js_model_config = None
self._inferred_parallel_degree = None
self._inferred_data_type = None
self._inferred_max_tokens = None
self.pysdk_model = None
self.model_uri = None
self.existing_properties = None
self.prepared_for_tgi = None
self.prepared_for_djl = None
self.schema_builder = None
self.nb_instance_type = None
self.ram_usage_model_load = None
self.jumpstart = None
@abstractmethod
def _prepare_for_mode(self):
"""Placeholder docstring"""
@abstractmethod
def _get_client_translators(self):
"""Placeholder docstring"""
def _is_jumpstart_model_id(self) -> bool:
"""Placeholder docstring"""
try:
model_uris.retrieve(model_id=self.model, model_version="*", model_scope=_JS_SCOPE)
except KeyError:
logger.warning(_NO_JS_MODEL_EX)
return False
logger.info("JumpStart Model ID detected.")
return True
def _create_pre_trained_js_model(self) -> Type[Model]:
"""Placeholder docstring"""
pysdk_model = JumpStartModel(self.model, vpc_config=self.vpc_config)
pysdk_model.sagemaker_session = self.sagemaker_session
self._original_deploy = pysdk_model.deploy
pysdk_model.deploy = self._js_builder_deploy_wrapper
return pysdk_model
@_capture_telemetry("jumpstart.deploy")
def _js_builder_deploy_wrapper(self, *args, **kwargs) -> Type[PredictorBase]:
"""Placeholder docstring"""
if "mode" in kwargs and kwargs.get("mode") != self.mode:
overwrite_mode = kwargs.get("mode")
# mode overwritten by customer during model.deploy()
logger.warning(
"Deploying in %s Mode, overriding existing configurations set for %s mode",
overwrite_mode,
self.mode,
)
if overwrite_mode == Mode.SAGEMAKER_ENDPOINT:
self.mode = self.pysdk_model.mode = Mode.SAGEMAKER_ENDPOINT
if not hasattr(self, "prepared_for_djl") or not hasattr(self, "prepared_for_tgi"):
self.pysdk_model.model_data, env = self._prepare_for_mode()
elif overwrite_mode == Mode.LOCAL_CONTAINER:
self.mode = self.pysdk_model.mode = Mode.LOCAL_CONTAINER
if not hasattr(self, "prepared_for_djl"):
(
self.existing_properties,
self.js_model_config,
self.prepared_for_djl,
) = prepare_djl_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
elif not hasattr(self, "prepared_for_tgi"):
self.js_model_config, self.prepared_for_tgi = prepare_tgi_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
env = {}
else:
raise ValueError("Mode %s is not supported!" % overwrite_mode)
self.pysdk_model.env.update(env)
serializer = self.schema_builder.input_serializer
deserializer = self.schema_builder._output_deserializer
if self.mode == Mode.LOCAL_CONTAINER:
if self.model_server == ModelServer.DJL_SERVING:
predictor = DjlLocalModePredictor(
self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer
)
elif self.model_server == ModelServer.TGI:
predictor = TgiLocalModePredictor(
self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer
)
ram_usage_before = _get_ram_usage_mb()
self.modes[str(Mode.LOCAL_CONTAINER)].create_server(
self.image_uri,
600,
None,
predictor,
self.pysdk_model.env,
jumpstart=True,
)
ram_usage_after = _get_ram_usage_mb()
self.ram_usage_model_load = max(ram_usage_after - ram_usage_before, 0)
return predictor
if "endpoint_logging" not in kwargs:
kwargs["endpoint_logging"] = True
if hasattr(self, "nb_instance_type"):
kwargs.update({"instance_type": self.nb_instance_type})
if "mode" in kwargs:
del kwargs["mode"]
if "role" in kwargs:
self.pysdk_model.role = kwargs.get("role")
del kwargs["role"]
predictor = self._original_deploy(*args, **kwargs)
predictor.serializer = serializer
predictor.deserializer = deserializer
return predictor
def _build_for_djl_jumpstart(self):
"""Placeholder docstring"""
env = {}
_create_dir_structure(self.model_path)
if self.mode == Mode.LOCAL_CONTAINER:
if not hasattr(self, "prepared_for_djl"):
(
self.existing_properties,
self.js_model_config,
self.prepared_for_djl,
) = prepare_djl_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
elif self.mode == Mode.SAGEMAKER_ENDPOINT and hasattr(self, "prepared_for_djl"):
self.nb_instance_type = _get_nb_instance()
self.pysdk_model.model_data, env = self._prepare_for_mode()
self.pysdk_model.env.update(env)
def _build_for_tgi_jumpstart(self):
"""Placeholder docstring"""
env = {}
if self.mode == Mode.LOCAL_CONTAINER:
if not hasattr(self, "prepared_for_tgi"):
self.js_model_config, self.prepared_for_tgi = prepare_tgi_js_resources(
model_path=self.model_path,
js_id=self.model,
dependencies=self.dependencies,
model_data=self.pysdk_model.model_data,
)
self._prepare_for_mode()
elif self.mode == Mode.SAGEMAKER_ENDPOINT and hasattr(self, "prepared_for_tgi"):
self.pysdk_model.model_data, env = self._prepare_for_mode()
self.pysdk_model.env.update(env)
def _tune_for_js(self, sharded_supported: bool, max_tuning_duration: int = 1800):
"""Tune for Jumpstart Models in Local Mode.
Args:
sharded_supported (bool): Indicates whether sharding is supported by this ``Model``
max_tuning_duration (int): The maximum timeout to deploy this ``Model`` locally.
Default: ``1800``
returns:
Tuned Model.
"""
if self.mode != Mode.LOCAL_CONTAINER:
logger.warning(
"Tuning is only a %s capability. Returning original model.", Mode.LOCAL_CONTAINER
)
return self.pysdk_model
num_shard_env_var_name = "SM_NUM_GPUS"
if "OPTION_TENSOR_PARALLEL_DEGREE" in self.pysdk_model.env.keys():
num_shard_env_var_name = "OPTION_TENSOR_PARALLEL_DEGREE"
initial_env_vars = copy.deepcopy(self.pysdk_model.env)
admissible_tensor_parallel_degrees = _get_admissible_tensor_parallel_degrees(
self.js_model_config
)
if len(admissible_tensor_parallel_degrees) > 1 and not sharded_supported:
admissible_tensor_parallel_degrees = [1]
logger.warning(
"Sharding across multiple GPUs is not supported for this model. "
"Model can only be sharded across [1] GPU"
)
benchmark_results = {}
best_tuned_combination = None
timeout = datetime.now() + timedelta(seconds=max_tuning_duration)
for tensor_parallel_degree in admissible_tensor_parallel_degrees:
if datetime.now() > timeout:
logger.info("Max tuning duration reached. Tuning stopped.")
break
self.pysdk_model.env.update({num_shard_env_var_name: str(tensor_parallel_degree)})
try:
logger.info("Trying tensor parallel degree: %s", tensor_parallel_degree)
predictor = self.pysdk_model.deploy(model_data_download_timeout=max_tuning_duration)
avg_latency, p90, avg_tokens_per_second = _serial_benchmark(
predictor, self.schema_builder.sample_input
)
throughput_per_second, standard_deviation = _concurrent_benchmark(
predictor, self.schema_builder.sample_input
)
tested_env = copy.deepcopy(self.pysdk_model.env)
logger.info(
"Average latency: %s, throughput/s: %s for configuration: %s",
avg_latency,
throughput_per_second,
tested_env,
)
benchmark_results[avg_latency] = [
tested_env,
p90,
avg_tokens_per_second,
throughput_per_second,
standard_deviation,
]
if not best_tuned_combination:
best_tuned_combination = [
avg_latency,
tensor_parallel_degree,
None,
p90,
avg_tokens_per_second,
throughput_per_second,
standard_deviation,
]
else:
tuned_configuration = [
avg_latency,
tensor_parallel_degree,
None,
p90,
avg_tokens_per_second,
throughput_per_second,
standard_deviation,
]
if _more_performant(best_tuned_combination, tuned_configuration):
best_tuned_combination = tuned_configuration
except LocalDeepPingException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. " "Failed to invoke the model server: %s",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except LocalModelOutOfMemoryException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. "
"Out of memory when loading the model: %s",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except LocalModelInvocationException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. "
"Failed to invoke the model server: %s"
"Please check that model server configurations are as expected "
"(Ex. serialization, deserialization, content_type, accept).",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except LocalModelLoadException as e:
logger.warning(
"Deployment unsuccessful with %s: %s. " "Failed to load the model: %s.",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except SkipTuningComboException as e:
logger.warning(
"Deployment with %s: %s"
"was expected to be successful. However failed with: %s. "
"Trying next combination.",
num_shard_env_var_name,
tensor_parallel_degree,
str(e),
)
except Exception: # pylint: disable=W0703
logger.exception(
"Deployment unsuccessful with %s: %s. " "with uncovered exception",
num_shard_env_var_name,
tensor_parallel_degree,
)
if best_tuned_combination:
self.pysdk_model.env.update({num_shard_env_var_name: str(best_tuned_combination[1])})
_pretty_print_results_jumpstart(benchmark_results, [num_shard_env_var_name])
logger.info(
"Model Configuration: %s was most performant with avg latency: %s, "
"p90 latency: %s, average tokens per second: %s, throughput/s: %s, "
"standard deviation of request %s",
self.pysdk_model.env,
best_tuned_combination[0],
best_tuned_combination[3],
best_tuned_combination[4],
best_tuned_combination[5],
best_tuned_combination[6],
)
else:
self.pysdk_model.env.update(initial_env_vars)
logger.debug(
"Failed to gather any tuning results. "
"Please inspect the stack trace emitted from live logging for more details. "
"Falling back to default model configurations: %s",
self.pysdk_model.env,
)
return self.pysdk_model
@_capture_telemetry("djl_jumpstart.tune")
def tune_for_djl_jumpstart(self, max_tuning_duration: int = 1800):
"""Tune for Jumpstart Models with DJL DLC"""
return self._tune_for_js(sharded_supported=True, max_tuning_duration=max_tuning_duration)
@_capture_telemetry("tgi_jumpstart.tune")
def tune_for_tgi_jumpstart(self, max_tuning_duration: int = 1800):
"""Tune for Jumpstart Models with TGI DLC"""
sharded_supported = _sharded_supported(self.model, self.js_model_config)
return self._tune_for_js(
sharded_supported=sharded_supported, max_tuning_duration=max_tuning_duration
)
def set_deployment_config(self, config_name: str, instance_type: str) -> None:
"""Sets the deployment config to apply to the model.
Args:
config_name (str):
The name of the deployment config to apply to the model.
Call list_deployment_configs to see the list of config names.
instance_type (str):
The instance_type that the model will use after setting
the config.
"""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
raise Exception("Cannot set deployment config to an uninitialized model.")
self.pysdk_model.set_deployment_config(config_name, instance_type)
def get_deployment_config(self) -> Optional[Dict[str, Any]]:
"""Gets the deployment config to apply to the model.
Returns:
Optional[Dict[str, Any]]: Deployment config to apply to this model.
"""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
self._build_for_jumpstart()
return self.pysdk_model.deployment_config
def display_benchmark_metrics(self, **kwargs):
"""Display Markdown Benchmark Metrics for deployment configs."""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
self._build_for_jumpstart()
self.pysdk_model.display_benchmark_metrics(**kwargs)
def list_deployment_configs(self) -> List[Dict[str, Any]]:
"""List deployment configs for ``This`` model in the current region.
Returns:
List[Dict[str, Any]]: A list of deployment configs.
"""
if not hasattr(self, "pysdk_model") or self.pysdk_model is None:
self._build_for_jumpstart()
return self.pysdk_model.list_deployment_configs()
def _build_for_jumpstart(self):
"""Placeholder docstring"""
if hasattr(self, "pysdk_model") and self.pysdk_model is not None:
return self.pysdk_model
# we do not pickle for jumpstart. set to none
self.secret_key = None
self.jumpstart = True
self.pysdk_model = self._create_pre_trained_js_model()
logger.info(
"JumpStart ID %s is packaged with Image URI: %s", self.model, self.pysdk_model.image_uri
)
if self._is_gated_model() and self.mode != Mode.SAGEMAKER_ENDPOINT:
raise ValueError(
"JumpStart Gated Models are only supported in SAGEMAKER_ENDPOINT mode."
)
if "djl-inference" in self.pysdk_model.image_uri:
logger.info("Building for DJL JumpStart Model ID...")
self.model_server = ModelServer.DJL_SERVING
self.image_uri = self.pysdk_model.image_uri
self._build_for_djl_jumpstart()
self.pysdk_model.tune = self.tune_for_djl_jumpstart
elif "tgi-inference" in self.pysdk_model.image_uri:
logger.info("Building for TGI JumpStart Model ID...")
self.model_server = ModelServer.TGI
self.image_uri = self.pysdk_model.image_uri
self._build_for_tgi_jumpstart()
self.pysdk_model.tune = self.tune_for_tgi_jumpstart
else:
raise ValueError(
"JumpStart Model ID was not packaged with djl-inference or tgi-inference container."
)
return self.pysdk_model
def _is_gated_model(self) -> bool:
"""Determine if ``this`` Model is Gated
Returns:
bool: ``True`` if ``this`` Model is Gated
"""
s3_uri = self.pysdk_model.model_data
if isinstance(s3_uri, dict):
s3_uri = s3_uri.get("S3DataSource").get("S3Uri")
if s3_uri is None:
return False
return "private" in s3_uri