-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
90 lines (78 loc) · 3.18 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from tianshou.data import to_torch
class Net(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu',
softmax=False):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
if action_shape:
self.model += [nn.Linear(128, np.prod(action_shape))]
if softmax:
self.model += [nn.Softmax(dim=-1)]
self.model = nn.Sequential(*self.model)
def forward(self, s, state=None, info={}):
s = to_torch(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
return logits, state
class Actor(nn.Module):
def __init__(self, preprocess_net, action_shape):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, np.prod(action_shape))
def forward(self, s, state=None, info={}):
logits, h = self.preprocess(s, state)
logits = F.softmax(self.last(logits), dim=-1)
return logits, h
class Critic(nn.Module):
def __init__(self, preprocess_net):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, 1)
def forward(self, s, **kwargs):
logits, h = self.preprocess(s, state=kwargs.get('state', None))
logits = self.last(logits)
return logits
class Recurrent(nn.Module):
def __init__(self, layer_num, state_shape, action_shape, device='cpu'):
super().__init__()
self.state_shape = state_shape
self.action_shape = action_shape
self.device = device
self.fc1 = nn.Linear(np.prod(state_shape), 128)
self.nn = nn.LSTM(input_size=128, hidden_size=128,
num_layers=layer_num, batch_first=True)
self.fc2 = nn.Linear(128, np.prod(action_shape))
def forward(self, s, state=None, info={}):
s = to_torch(s, device=self.device, dtype=torch.float)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(s.shape) == 2:
bsz, dim = s.shape
length = 1
else:
bsz, length, dim = s.shape
s = self.fc1(s.view([bsz * length, dim]))
s = s.view(bsz, length, -1)
self.nn.flatten_parameters()
if state is None:
s, (h, c) = self.nn(s)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
s, (h, c) = self.nn(s, (state['h'].transpose(0, 1).contiguous(),
state['c'].transpose(0, 1).contiguous()))
s = self.fc2(s[:, -1])
# please ensure the first dim is batch size: [bsz, len, ...]
return s, {'h': h.transpose(0, 1).detach(),
'c': c.transpose(0, 1).detach()}