-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeed-up-7.py
229 lines (171 loc) · 7.75 KB
/
speed-up-7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# power of 2 (nice numbers), vocab size changed
import os
import math
import tiktoken
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
torch.set_float32_matmul_precision('high')
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
n_head = config.n_head
n_embd = config.n_embd
assert n_embd % n_head == 0
# query, key, value prjections all combined
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
# output projection, after `v` is already multiplied with attention_scores
self.c_proj = nn.Linear(n_embd, n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
block_size = config.block_size
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
self.n_embd = n_embd
self.n_head = n_head
def forward(self, x):
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd)
# total dim = n_head * head_size
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304)
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# final-> bs, n_heads, seq_len, mini-n_head_embd
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# print(f"shape of q: {q.shape}... shape of k : {k.shape}")
# attn = (q @ k.transpose(-2, -1)) / (math.sqrt(k.shape[-1]))
#
# # apply masked fill at places where mask ==0, remember tril is lower triangle
# attn = attn.masked_fill(mask=self.bias[:, :, :T, :T] == 0, value=float('-inf'))
#
# attn = F.softmax(attn, dim=-1)
#
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # Flash attention
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768
y = y.transpose(1, 2).contiguous().view(B, T, C)
# out projection, B, T, C -> B, T, C
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weights = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size() # batch , seq_len
# check if incoming seq_len of idx is within limits
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"
# forward for token and position encodings
# shape (T)
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd)
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd)
x = pos_emb + token_emb
# now forward through transformer blocks
for block in self.transformer.h:
x = block(x)
# pass through final layernorm
x = self.transformer.ln_f(x)
# pass through final LM_HEAD
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@dataclass
class GPTConfig:
block_size: int = 1024 # this is max sequence len
vocab_size: int = 50304 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges
n_layer: int = 12 # number of layers
n_head: int = 12 # total number of attention heads
n_embd: int = 768 # embedding dimension
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
with open('input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded len : {len(self.tokens)}')
print(f'1 epoch = :{len(self.tokens)}//{B * T} = {len(self.tokens) // (B * T)} batches ')
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
x = buf[:-1].view(B, T)
y = buf[1:].view(B, T)
self.current_position += (B * T)
if self.current_position + (B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'mps' if hasattr(torch.backends, 'mps') and
torch.backends.mps.is_available() else 'cpu')
model = GPT(GPTConfig()).to(device=device)
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
train_loader = DataLoaderLite(B=6, T=1024)
model = torch.compile(model, mode='max-autotune')
for i in range(50):
t0 = time.time()
x, y = train_loader.next_batch()
x, y = x.to(device=device), y.to(device)
optimizer.zero_grad()
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(x, y)
loss.backward()
optimizer.step()
t1 = time.time()
dt = (t1 - t0)
tokens_per_sec = (train_loader.B * train_loader.T) / (dt)
print(
f'step : {i + 1} | loss: {loss.item()} | dt: {dt * 1000:.2f} ms | tokens/sec: {tokens_per_sec:.2f}')