-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathinverse_render.py
156 lines (121 loc) · 5.07 KB
/
inverse_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import math
import os
from torchvision.utils import save_image
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import numpy as np
import skvideo.io
import curriculums
from torchvision import transforms
def tensor_to_PIL(img):
img = img.squeeze() * 0.5 + 0.5
return Image.fromarray(img.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('generator_path', type=str)
parser.add_argument('image_path', type=str)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--image_size', type=int, default=128)
parser.add_argument('--num_frames', type=int, default=64)
parser.add_argument('--max_batch_size', type=int, default=2400000)
opt = parser.parse_args()
generator = torch.load(opt.generator_path, map_location=torch.device(device))
ema_file = opt.generator_path.split('generator')[0] + 'ema.pth'
ema = torch.load(ema_file, map_location=device)
ema.copy_to(generator.parameters())
generator.set_device(device)
generator.eval()
if opt.seed is not None:
torch.manual_seed(opt.seed)
gt_image = Image.open(opt.image_path).convert('RGB')
transform = transforms.Compose(
[transforms.Resize(256), transforms.CenterCrop(256), transforms.Resize((opt.image_size, opt.image_size), interpolation=0), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
gt_image = transform(gt_image).to(device)
options = {
'img_size': opt.image_size,
'fov': 12,
'ray_start': 0.88,
'ray_end': 1.12,
'num_steps': 24,
'h_stddev': 0,
'v_stddev': 0,
'h_mean': torch.tensor(math.pi/2).to(device),
'v_mean': torch.tensor(math.pi/2).to(device),
'hierarchical_sample': False,
'sample_dist': None,
'clamp_mode': 'relu',
'nerf_noise': 0,
}
render_options = {
'img_size': 256,
'fov': 12,
'ray_start': 0.88,
'ray_end': 1.12,
'num_steps': 48,
'h_stddev': 0,
'v_stddev': 0,
'v_mean': math.pi/2,
'hierarchical_sample': True,
'sample_dist': None,
'clamp_mode': 'relu',
'nerf_noise': 0,
'last_back': True,
}
z = torch.randn((10000, 256), device=device)
with torch.no_grad():
frequencies, phase_shifts = generator.siren.mapping_network(z)
w_frequencies = frequencies.mean(0, keepdim=True)
w_phase_shifts = phase_shifts.mean(0, keepdim=True)
w_frequency_offsets = torch.zeros_like(w_frequencies)
w_phase_shift_offsets = torch.zeros_like(w_phase_shifts)
w_frequency_offsets.requires_grad_()
w_phase_shift_offsets.requires_grad_()
frames = []
n_iterations_pose = 0
n_iterations = 700
os.makedirs('debug', exist_ok=True)
save_image(gt_image, "debug/gt.jpg", normalize=True)
optimizer = torch.optim.Adam([w_frequency_offsets, w_phase_shift_offsets], lr=1e-2, weight_decay = 1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 100, gamma=0.75)
for i in range(n_iterations):
noise_w_frequencies = 0.03 * torch.randn_like(w_frequencies) * (n_iterations - i)/n_iterations
noise_w_phase_shifts = 0.03 * torch.randn_like(w_phase_shifts) * (n_iterations - i)/n_iterations
frame, _ = generator.forward_with_frequencies(w_frequencies + noise_w_frequencies + w_frequency_offsets, w_phase_shifts + noise_w_phase_shifts + w_phase_shift_offsets, **options)
loss = torch.nn.MSELoss()(frame, gt_image)
loss = loss.mean()
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if i % 100 == 0:
save_image(frame, f"debug/{i}.jpg", normalize=True)
with torch.no_grad():
for angle in [-0.7, -0.5, -0.3, 0, 0.3, 0.5, 0.7]:
img, _ = generator.staged_forward_with_frequencies(w_frequencies + w_frequency_offsets, w_phase_shifts + w_phase_shift_offsets, h_mean=(math.pi/2 + angle), max_batch_size=opt.max_batch_size, lock_view_dependence=True, **render_options)
save_image(img, f"debug/{i}_{angle}.jpg", normalize=True)
trajectory = []
for t in np.linspace(0, 1, 24):
pitch = 0.2 * t
yaw = 0
trajectory.append((pitch, yaw))
for t in np.linspace(0, 1, opt.num_frames):
pitch = 0.2 * np.cos(t * 2 * math.pi)
yaw = 0.4 * np.sin(t * 2 * math.pi)
trajectory.append((pitch, yaw))
output_name = 'reconstructed.mp4'
writer = skvideo.io.FFmpegWriter(os.path.join('debug', output_name), outputdict={'-pix_fmt': 'yuv420p', '-crf': '21'})
frames = []
depths = []
with torch.no_grad():
for pitch, yaw in tqdm(trajectory):
render_options['h_mean'] = yaw + 3.14/2
render_options['v_mean'] = pitch + 3.14/2
frame, depth_map = generator.staged_forward_with_frequencies(w_frequencies + w_frequency_offsets, w_phase_shifts + w_phase_shift_offsets, max_batch_size=opt.max_batch_size, lock_view_dependence=True, **render_options)
frames.append(tensor_to_PIL(frame))
depths.append(depth_map.unsqueeze(0).expand(-1, 3, -1, -1).squeeze().permute(1, 2, 0).cpu().numpy())
for frame in frames:
writer.writeFrame(np.array(frame))
writer.close()