-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_cnn_elastic.py
210 lines (174 loc) · 7.35 KB
/
cifar_cnn_elastic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
from itertools import count
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import from_numpy, as_tensor, float32, int64
from drawing import plot_results
seed = 73 # np.random.randint(low=0, high=2**10)
torch.manual_seed(seed)
np.random.seed(seed)
device = 'cpu' # torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device_name = torch.cuda.get_device_name(device=device) if torch.cuda.is_available() else '-'
learning_rate = 1e-2
epochs = 10
batch_size = 60
workers = 4
commute_t = 5
print(f"elasticity as beta / (tau * p * lr): {0.9 / (commute_t * workers * learning_rate)}")
elasticity = 0.01
print(f"elasticity is set to: {elasticity}")
class FNN(nn.Module):
def __init__(self, input_size, output_size, bias=False):
super(FNN, self).__init__()
self.flatten = nn.Flatten()
self.model = nn.Sequential(
nn.Linear(input_size, 100, bias=bias),
nn.ReLU(),
nn.Linear(100, 30, bias=bias),
nn.ReLU(),
nn.Linear(30, output_size, bias=bias)
)
def forward(self, x):
x = x.float()
x = self.flatten(x)
return self.model(x)
def train(dataloader, model, loss_fn, n_classes):
size = len(dataloader.dataset)
model.train()
for batch_number, (batch, labels) in enumerate(dataloader):
target = torch.zeros([batch_size, n_classes], dtype=torch.float32)
for i, label in enumerate(labels):
target[i, label] = 1.0
batch, target = batch.to(device), target.to(device)
pred = model(batch)
loss = loss_fn(pred, target)
grad = torch.autograd.grad(outputs=loss, inputs=model.parameters())
with torch.no_grad():
for param, param_grad in zip(model.parameters(), grad):
new_param = param - learning_rate * param_grad
param.copy_(new_param)
if batch_number % 100 == 0:
loss, current = loss.item(), batch_number * len(batch)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def train_elastic(dataloaders, master, models, tmp, loss_fn, n_classes):
batches = len(dataloaders[0])
master.train()
for model in models:
model.train()
t = 0
for batch_number in range(0, batches):
for n, (dataloader, model) in enumerate(zip(dataloaders, models)):
batch, labels = next(iter(dataloader))
target = torch.zeros([batch_size, n_classes], dtype=torch.float32)
for i, label in enumerate(labels):
target[i, label] = 1.0
batch, target = batch.to(device), target.to(device)
pred = model(batch)
loss = loss_fn(pred, target)
tmp.load_state_dict(model.state_dict())
# gradient step
grad = torch.autograd.grad(outputs=loss, inputs=model.parameters())
with torch.no_grad():
for param, param_grad in zip(model.parameters(), grad):
param.copy_(param - learning_rate * param_grad)
# elastic step
if t % commute_t == 0:
with torch.no_grad():
for param, tmp_param, master_param in zip(model.parameters(), tmp.parameters(), master.parameters()):
param.copy_(param - elasticity * (tmp_param - master_param))
master_param.copy_(master_param + elasticity * (tmp_param - master_param))
if n == 0:
t += 1
if batch_number % 100 == 0:
loss, current = loss.item(), batch_number * len(batch)
print(f"loss: {loss:>7f} [{current:>5d}/{len(dataloaders[0].dataset):>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for batch, label in dataloader:
batch, label = batch.to(device), label.to(device)
pred = model(batch)
# # MSELoss
test_loss += loss_fn(pred.max(dim=1).values, label.float()).item()
# # CrossEntropyLoss
# test_loss += loss_fn(pred, label).item()
correct += (pred.argmax(1) == label).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
def debug(training_data, model):
labels_map = {key: value for (key, value) in enumerate(training_data.classes)}
print(labels_map)
figure, axs = plt.subplots(3, 3, figsize=(8, 8))
for ax in axs.reshape(9):
sample_id = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_id]
ax.set_title(labels_map[model(img).argmax(1).item()])
ax.axis("off")
img = img.T
img = torch.rot90(img, 1, [0, 1])
img = torch.flip(img, [0])
ax.imshow(img, cmap="gray")
plt.show()
def main():
training_data = datasets.MNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.MNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True)
train_dataloaders = [DataLoader(training_data, batch_size=batch_size, shuffle=True) for _ in range(0, workers)]
test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
batch, labels = next(iter(test_dataloader))
n_classes = len(test_data.classes)
input_size = np.prod(batch.shape[1:])
print("Shape of X [N, C, H, W]: ", batch.shape)
print("Shape of y: ", labels.shape, labels.dtype)
print("Input size: ", input_size)
# Fully connected NN
loss_fn = nn.MSELoss()
master = FNN(input_size, n_classes).to(device)
models = [FNN(input_size, n_classes).to(device) for _ in range(0, workers)]
tmp = FNN(input_size, n_classes).to(device)
# EASGD init:
for model in models:
model.load_state_dict(master.state_dict())
# # Replicated init:
# master.load_state_dict(models[0].state_dict())
# with torch.no_grad():
# for i in range(1, workers):
# for param, master_param in zip(models[i].parameters(), master.parameters()):
# master_param.copy_(master_param + param)
# for master_param in master.parameters():
# master_param.divide_(workers)
weights = sum(p.numel() for p in master.parameters())
print(f'{weights} weights, model: {master}')
print(f'Using {device} device: {device_name}')
print(f'START: {datetime.now().strftime("%Y.%m.%d %H-%M-%S")}')
for t in range(epochs):
print(f"Epoch {t + 1}\n-------------------------------")
# train(train_dataloader, master, loss_fn, n_classes)
train_elastic(train_dataloaders, master, models, tmp, loss_fn, n_classes)
test(test_dataloader, master, loss_fn)
print(f'FINISHED: {datetime.now().strftime("%Y.%m.%d %H-%M-%S")}')
debug(test_data, master)
if __name__ == '__main__':
main()