-
Notifications
You must be signed in to change notification settings - Fork 586
Writing with Markdown Grammar
这是主题正文演示的源码,注意部分地方不是标准的 Markdown 语法,可酌情使用。WordPress 原生对 markdown 不是太友好,建议借助 WP Editor.md 插件在 WordPress 上使用 Markdwon 语法写作。
[toc][begin]B[/begin]igger data and more intelligent algorithms are being processed and analyzed faster in an API-enabled, open source environment. J.P. Morgan is committed to understanding how this technology-driven landscape could differentiate your stock, sector, portfolio, and asset class strategies.[Here](https://www.jpmorgan.com/global/research/machine-learning), J.P. Morgan summarizes key research in machine learning, big data and artificial intelligence, highlighting exciting trends that impact the financial community.
---
# h1 Heading
## h2 Heading
### h3 Heading
#### h4 Heading
##### h5 Heading
###### h6 Heading
## Horizontal Rules
___
---
***
## Typographic replacements
Enable typographer option to see result.
(c) (C) (r) (R) (tm) (TM) (p) (P) +-
test.. test... test..... test?..... test!....
!!!!!! ???? ,, -- ---
"Smartypants, double quotes" and 'single quotes'
## Emphasis
**This is bold text**
__This is bold text__
*This is italic text*
_This is italic text_
~~Strikethrough~~
## Blockquotes
> Blockquotes can also be nested...
>> ...by using additional greater-than signs right next to each other...
> > > ...or with spaces between arrows.
## Lists
Unordered
+ Create a list by starting a line with `+`, `-`, or `*`
+ Sub-lists are made by indenting 2 spaces:
- Marker character change forces new list start:
* Ac tristique libero volutpat at
+ Facilisis in pretium nisl aliquet
- Nulla volutpat aliquam velit
+ Very easy!
Ordered
1. Lorem ipsum dolor sit amet
2. Consectetur adipiscing elit
3. Integer molestie lorem at massa
1. You can use sequential numbers...
1. ...or keep all the numbers as `1.`
Start numbering with offset:
57. foo
1. bar
## Code
Inline `code`
Indented code
// Some comments
line 1 of code
line 2 of code
line 3 of code
Block code "fences"
Sample text here...
Syntax highlighting
``` js
var foo = function (bar) {
return bar++;
};
console.log(foo(5));
Option | Description |
---|---|
data | path to data files to supply the data that will be passed into templates. |
engine | engine to be used for processing templates. Handlebars is the default. |
ext | extension to be used for dest files. |
Right aligned columns
Option | Description |
---|---|
data | path to data files to supply the data that will be passed into templates. |
engine | engine to be used for processing templates. Handlebars is the default. |
ext | extension to be used for dest files. |
Autoconverted link https://github.com/nodeca/pica (enable linkify to see)
Like links, Images also have a footnote style syntax
With a reference later in the document defining the URL location:
The killer feature of markdown-it
is very effective support of
syntax plugins.
Classic markup: 😉 :crush: 😢 :tear: 😆 😋
Shortcuts (emoticons): :-) :-( 8-) ;)
see how to change output with twemoji.
- 19^th^
- H
2O
++Inserted text++
==Marked text==
Footnote 1 link[^first].
Footnote 2 link[^second].
Inline footnote^[Text of inline footnote] definition.
Duplicated footnote reference[^second].
[^first]: Footnote can have markup
and multiple paragraphs.
[^second]: Footnote text.
Term 1
: Definition 1 with lazy continuation.
Term 2 with inline markup
: Definition 2
{ some code, part of Definition 2 }
Third paragraph of definition 2.
Compact style:
Term 1 ~ Definition 1
Term 2 ~ Definition 2a ~ Definition 2b
This is HTML abbreviation example.
It converts "HTML", but keep intact partial entries like "xxxHTMLyyy" and so on.
*[HTML]: Hyper Text Markup Language
::: warning here be dragons :::
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
# Load the data
oecd_bli = pd.read_csv("oecd_bli_2015.csv", thousands=',')
gdp_per_capita = pd.read_csv("gdp_per_capita.csv",thousands=',',delimiter='\t',
encoding='latin1', na_values="n/a")
# Prepare the data
country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]]
y = np.c_[country_stats["Life satisfaction"]]
# Visualize the data
country_stats.plot(kind='scatter', x="GDP per capita", y='Life satisfaction')
plt.show()
# Select a linear model
lin_reg_model = sklearn.linear_model.LinearRegression()
# Train the model
lin_reg_model.fit(X, y)
# Make a prediction for Cyprus
X_new = [[22587]] # Cyprus' GDP per capita
print(lin_reg_model.predict(X_new)) # outputs [[ 5.96242338]]
!{image 1}(https://view.moezx.cc/images/2019/01/19/TVKDX147_006.png)[https://view.moezx.cc/images/2019/01/19/TVKDX147_006.th.png]!{image 2}(https://view.moezx.cc/images/2018/01/15/PID50489279by.jpg)[https://view.moezx.cc/images/2018/01/15/PID50489279by.th.jpg]!{image 3}(https://view.moezx.cc/images/2018/09/15/_63393975.png)[https://view.moezx.cc/images/2018/09/15/_63393975.th.png]!{image 4}(https://view.moezx.cc/images/2018/09/19/chise_by_kyuriin-dceh641.jpg)[https://view.moezx.cc/images/2018/09/19/chise_by_kyuriin-dceh641.th.jpg]!{image 5}(https://view.moezx.cc/images/2018/09/19/kurumi_by_kyuriin-dbwaxsg.jpg)[https://view.moezx.cc/images/2018/09/19/kurumi_by_kyuriin-dbwaxsg.th.jpg]!{image 6}(https://view.moezx.cc/images/2018/09/19/98ee64cb1ed331733ea000f007c85564a6fc0ecf.jpg)[https://view.moezx.cc/images/2018/09/19/98ee64cb1ed331733ea000f007c85564a6fc0ecf.th.jpg]
We are all in the gutter, but some of us are looking at the stars.
[hermit autoplay="false" mode="circulation" preload="auto"]netease_playlist#:3319320[/hermit]