-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patharbitrage.py
84 lines (68 loc) · 1.73 KB
/
arbitrage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import cvxpy as cp
# Problem data
global_indices = list(range(4))
local_indices = [
[0, 1, 2, 3],
[0, 1],
[1, 2],
[2, 3],
[2, 3]
]
reserves = list(map(np.array, [
[4, 4, 4, 4],
[10, 1],
[1, 5],
[40, 50],
[10, 10]
]))
fees = [
.998,
.997,
.997,
.997,
.999
]
# "Market value" of tokens (say, in a centralized exchange)
market_value = [
1.5,
10,
2,
3
]
# Build local-global matrices
n = len(global_indices)
m = len(local_indices)
A = []
for l in local_indices:
n_i = len(l)
A_i = np.zeros((n, n_i))
for i, idx in enumerate(l):
A_i[idx, i] = 1
A.append(A_i)
# Build variables
deltas = [cp.Variable(len(l), nonneg=True) for l in local_indices]
lambdas = [cp.Variable(len(l), nonneg=True) for l in local_indices]
psi = cp.sum([A_i @ (L - D) for A_i, D, L in zip(A, deltas, lambdas)])
# Objective is to maximize "total market value" of coins out
obj = cp.Maximize(market_value @ psi)
# Reserves after trade
new_reserves = [R + gamma_i*D - L for R, gamma_i, D, L in zip(reserves, fees, deltas, lambdas)]
# Trading function constraints
cons = [
# Balancer pool with weights 4, 3, 2, 1
cp.geo_mean(new_reserves[0], p=np.array([4, 3, 2, 1])) >= cp.geo_mean(reserves[0]),
# Uniswap v2 pools
cp.geo_mean(new_reserves[1]) >= cp.geo_mean(reserves[1]),
cp.geo_mean(new_reserves[2]) >= cp.geo_mean(reserves[2]),
cp.geo_mean(new_reserves[3]) >= cp.geo_mean(reserves[3]),
# Constant sum pool
cp.sum(new_reserves[4]) >= cp.sum(reserves[4]),
new_reserves[4] >= 0,
# Arbitrage constraint
psi >= 0
]
# Set up and solve problem
prob = cp.Problem(obj, cons)
prob.solve()
print(f"Total output value: {prob.value}")