% Read test image. I = imread(fullfile('data','inputTeam.jpg')); % Get classnames of COCO dataset. classNames = helper.getCOCOClassNames; numClasses = size(classNames,1); % Replace 'yolov8n' with other values in 'yolov8SegPredict.m' to generate code for % other YOLO v8 variants. modelName = 'yolov8n'; % Display yolov8SegPredict function. type('yolov8SegPredict.m'); % Generate MATLAB code. cfg = coder.config('mex'); cfg.TargetLang = 'C++'; % % 'cudnn' and 'none' are also supported. cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLibrary = 'mkldnn'); inputArgs = {I,coder.Constant(numClasses)}; codegen -config cfg yolov8SegPredict -args inputArgs -report % Perform detection using pretrained model. [masks,labelIds,scores,bboxes] = yolov8SegPredict_mex(I,numClasses); % Map labelIds back to labels. labels = classNames(labelIds); % Visualize detection results. Idisp = insertObjectAnnotation(I,"rectangle",bboxes,labels); numMasks = size(masks,3); overlayedImage = insertObjectMask(Idisp,masks,MaskColor=lines(numMasks)); figure;imshow(overlayedImage);