-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcwvae.py
350 lines (297 loc) · 13 KB
/
cwvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import torch
import torch.nn as nn
import torch.distributions as dist
from cnns import Encoder, Decoder
from cells import RSSMCell
class CWVAE(nn.Module):
def __init__(
self,
levels,
tmp_abs_factor,
state_sizes,
embed_size,
obs_embed_size,
enc_dense_layers,
enc_dense_embed_size,
channels_mult,
device,
cell_type,
min_stddev,
mean_only_cell=False,
reset_states=False,
):
super(CWVAE, self).__init__()
self._levels = levels
self._tmp_abs_factor = tmp_abs_factor
self._state_sizes = state_sizes
self._embed_size = embed_size
self._obs_embed_size = obs_embed_size
self._cell_type = cell_type
self._min_stddev = min_stddev
self._mean_only_cell = mean_only_cell
self._reset_states = reset_states
self.device = device
# エンコーダーとデコーダーの設定
self.encoder = Encoder(
levels,
tmp_abs_factor,
dense_layers=enc_dense_layers,
embed_size=enc_dense_embed_size,
channels_mult=channels_mult,
).to(device)
self.decoder = Decoder(
output_channels=3,
embed_size=self._state_sizes["deter"],
channels_mult=channels_mult,
final_activation=nn.Tanh(),
).to(device)
# RSSMセルをレベルごとに作成
self.cells = nn.ModuleList()
for level in range(self._levels):
if self._cell_type == 'RSSMCell':
cell = RSSMCell(
stoch_size=self._state_sizes["stoch"],
deter_size=self._state_sizes["deter"],
embed_size=self._embed_size,
obs_embed_size=self._obs_embed_size,
reset_states=self._reset_states,
min_stddev=self._min_stddev,
mean_only=self._mean_only_cell,
).to(device)
else:
raise NotImplementedError(f"Unknown cell type {self._cell_type}")
self.cells.append(cell)
# 潜在変数を埋め込み空間に変換する線形層
self.stoch_to_embed = nn.Linear(self._state_sizes["stoch"], self._embed_size).to(device)
def init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.GRUCell):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.kaiming_uniform_(param, nonlinearity='relu')
elif 'bias' in name:
nn.init.zeros_(param)
def decode_prior_multistep(self, prior_multistep):
"""
prior_multistep: Tensor of shape [batch, steps, stoch_size]
Returns: Tensor of shape [batch, steps, channels, height, width]
"""
embed = self.stoch_to_embed(prior_multistep) # [B, T, embed_size]
decoded = self.decoder(embed) # [B, T, C, H, W]
return decoded
def hierarchical_unroll(self, inputs, actions=None, use_observations=None, initial_state=None):
level_top = self._levels - 1
if initial_state is None:
initial_state = [None] * self._levels
if not isinstance(use_observations, list): # use_observationsがリストでない場合、すべてのレベルで同じ値を使用
use_observations = [use_observations] * self._levels
context = torch.zeros(
inputs[level_top].size(0),
inputs[level_top].size(1),
self.cells[-1]._detstate_size,
device=inputs[level_top].device
)
prior_list = []
posterior_list = []
last_state_all_levels = []
for level in range(level_top, -1, -1):
obs_inputs = inputs[level]
# バッチ次元の確認
if obs_inputs.size(0) != context.size(0):
obs_inputs = obs_inputs.transpose(0, 1)
# obs_inputs と context のバッチサイズ確認
if obs_inputs.size(0) != context.size(0):
raise ValueError(f"Batch size mismatch at level {level}: obs_inputs.size(0) = {obs_inputs.size(0)}, context.size(0) = {context.size(0)}")
if level == level_top:
reset_state = torch.ones(
obs_inputs.size(0), obs_inputs.size(1), 1, device=obs_inputs.device)
else:
reset_state = reset_state.unsqueeze(2).repeat(1, 1, self._tmp_abs_factor, 1)
reset_state = reset_state.view(
reset_state.size(0),
reset_state.size(1) * self._tmp_abs_factor,
reset_state.size(3)
)
expected_seq_len = obs_inputs.size(1)
# contextのシーケンス長を合わせる
if level != level_top:
context = context.unsqueeze(2).repeat(1, 1, self._tmp_abs_factor, 1)
context = context.view(
context.size(0),
context.size(1) * self._tmp_abs_factor,
context.size(3)
)
# context の長さを調整
context = context[:, :expected_seq_len, :]
if level == 0 and actions is not None:
context = torch.cat([context, actions], dim=-1)
initial = self.cells[level].zero_state(obs_inputs.size(0), obs_inputs.device)
if initial_state[level] is not None:
initial = initial_state[level]
prior, posterior, posterior_last_step = manual_scan(
self.cells[level],
obs_inputs,
context,
reset_state,
use_observations[level], # 各レベルの use_observations を使用
initial,
)
last_state_all_levels.insert(0, posterior_last_step)
context = posterior["det_out"]
prior_list.insert(0, prior)
posterior_list.insert(0, posterior)
output_bot_level = context
return output_bot_level, last_state_all_levels, prior_list, posterior_list
def open_loop_unroll(self, inputs, ctx_len, actions=None, use_observations=None, initial_state=None):
if use_observations is None:
use_observations = [True] * self._levels # use_observationsがNoneの場合、すべてのレベルでTrueを使用
ctx_len_backup = ctx_len
pre_inputs = []
post_inputs = []
for lvl in range(self._levels):
pre_inputs.append(inputs[lvl][:, :ctx_len, :])
post_inputs.append(torch.zeros_like(inputs[lvl][:, ctx_len:, :]))
ctx_len = ctx_len // self._tmp_abs_factor
ctx_len = ctx_len_backup
actions_pre = actions_post = None
if actions is not None:
actions_pre = actions[:, :ctx_len, :]
actions_post = actions[:, ctx_len:, :]
_, pre_last_state_all_levels, pre_priors, pre_posteriors = self.hierarchical_unroll(
pre_inputs, actions=actions_pre, use_observations=use_observations, initial_state=initial_state
)
outputs_bot_level, _, post_priors, _ = self.hierarchical_unroll(
post_inputs, actions=actions_post, use_observations=[False] * self._levels, initial_state=pre_last_state_all_levels
)
return pre_posteriors, pre_priors, post_priors, outputs_bot_level
def _log_prob_obs(self, samples, mean, stddev):
"""
Returns the log probability of the observed samples under a normal distribution
defined by the mean and stddev.
"""
mvn = dist.Normal(mean, stddev)
log_prob = mvn.log_prob(samples) # ログ確率を計算
return log_prob.sum(dim=[-3, -2, -1]) # 各ピクセルのログ確率を合計して返す
def _gaussian_KLD(self, dist1, dist2):
mvn1 = dist.Normal(dist1["mean"], dist1["stddev"])
mvn2 = dist.Normal(dist2["mean"], dist2["stddev"])
return dist.kl_divergence(mvn1, mvn2).sum(dim=-1)
def compute_losses(self, obs, obs_decoded, priors, posteriors, dec_stddev=0.1, kl_grad_post_perc=None, free_nats=None, beta=None):
# dec_stddev をテンソルに変換
if isinstance(dec_stddev, (int, float)):
dec_stddev = torch.full_like(obs_decoded, dec_stddev)
# 観測されたデータとデコードされたデータのネガティブ対数尤度の計算
nll_term = -self._log_prob_obs(obs, obs_decoded, dec_stddev).mean()
# KLダイバージェンスの計算
kl_term = torch.tensor(0.0).to(obs.device)
kld_all_levels = []
for i in range(self._levels):
kld_level = self._gaussian_KLD(posteriors[i], priors[i])
if free_nats is not None:
kld_level = torch.clamp(kld_level - free_nats, min=0.0)
if beta is not None:
if isinstance(beta, list):
kld_level = beta[i] * kld_level
else:
kld_level = beta * kld_level
kl_term += kld_level.mean()
kld_all_levels.append(kld_level)
# ELBOの計算(負の対数尤度 + KLダイバージェンス)
neg_elbo = nll_term + kl_term
loss = neg_elbo / obs.size(1)
return {
"loss": loss,
"nll_term": nll_term,
"kl_term": kl_term,
"kld_all_levels": kld_all_levels
}
def manual_scan(cell, obs_inputs, context, reset_state, use_observation, initial):
priors = []
posteriors = []
prev_out = {"state": initial}
seq_len = obs_inputs.size(1)
for t in range(seq_len):
inputs = (
obs_inputs[:, t],
context[:, t],
reset_state[:, t],
)
outputs = cell(prev_out, inputs, use_observation)
priors.append(outputs["out"][0])
posteriors.append(outputs["out"][1])
prev_out = outputs
prior = {k: torch.stack([p[k] for p in priors], dim=1) for k in priors[0]}
posterior = {k: torch.stack([p[k] for p in posteriors], dim=1) for k in posteriors[0]}
posterior_last_step = prev_out["state"]
return prior, posterior, posterior_last_step
def build_model(cfg, open_loop=True):
device = cfg['device']
# モデルのインスタンス作成
model = CWVAE(
levels=cfg['levels'],
tmp_abs_factor=cfg['tmp_abs_factor'],
state_sizes={"stoch": cfg['cell_stoch_size'], "deter": cfg['cell_deter_size']},
embed_size=cfg['cell_embed_size'],
obs_embed_size=cfg['enc_dense_embed_size'],
enc_dense_layers=cfg['enc_dense_layers'],
enc_dense_embed_size=cfg['enc_dense_embed_size'],
channels_mult=cfg['channels_mult'],
device=device,
cell_type=cfg['cell_type'],
min_stddev=cfg['cell_min_stddev'],
mean_only_cell=cfg['cell_mean_only'],
reset_states=cfg['cell_reset_state'],
).to(device)
model.apply(model.init_weights)
obs = torch.zeros([cfg['batch_size'], cfg['seq_len'], cfg['channels'], 64, 64]).to(device)
obs_encoded = model.encoder(obs)
if len(obs_encoded) != cfg['levels']:
raise ValueError(f"Encoder output does not match expected levels. Expected {cfg['levels']}, but got {len(obs_encoded)}.")
outputs_bot, last_state_all_levels, priors, posteriors = model.hierarchical_unroll(obs_encoded)
obs_decoded = model.decoder(outputs_bot)
losses = model.compute_losses(
obs,
obs_decoded,
priors,
posteriors,
dec_stddev=cfg['dec_stddev'],
free_nats=cfg['free_nats'],
beta=cfg['beta'],
)
if open_loop:
ctx_len = cfg['open_loop_ctx']
pre_posteriors, pre_priors, post_priors, outputs_bot_level = model.open_loop_unroll(
obs_encoded, ctx_len=ctx_len, use_observations=cfg.get('use_obs', True)
)
prior_multistep_decoded = model.decode_prior_multistep(post_priors[0]["mean"])
open_loop_obs_decoded = {
"posterior_recon": model.decoder(pre_posteriors[0]["det_out"]),
"prior_multistep": prior_multistep_decoded,
"gt_multistep": obs[:, ctx_len:, ...],
}
else:
open_loop_obs_decoded = None
return {
"training": {
"obs": obs,
"encoder": model.encoder,
"decoder": model.decoder,
"obs_encoded": obs_encoded,
"obs_decoded": obs_decoded,
"priors": priors,
"posteriors": posteriors,
"loss": losses["loss"],
"nll_term": losses["nll_term"],
"kl_term": losses["kl_term"],
"kld_all_levels": losses["kld_all_levels"],
},
"meta": {"model": model},
"open_loop_obs_decoded": open_loop_obs_decoded,
}