forked from llmware-ai/llmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontract_analysis_on_laptop_with_bling_models.py
71 lines (46 loc) · 2.72 KB
/
contract_analysis_on_laptop_with_bling_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""This example demonstrates a basic contract analysis workflow run entirely on on a laptop
using a RAG-finetuned small specialized instruct BLING model
"""
import os
import re
from llmware.prompts import Prompt, HumanInTheLoop
from llmware.setup import Setup
from llmware.configs import LLMWareConfig
def contract_analysis_on_laptop (model_name):
# Load the llmware sample files
print (f"\n > Loading the llmware sample files...")
sample_files_path = Setup().load_sample_files()
contracts_path = os.path.join(sample_files_path,"Agreements")
# query list
query_list = {"executive employment agreement": "What are the name of the two parties?",
"base salary": "What is the executive's base salary?",
"governing law": "What is the governing law?"}
print (f"\n > Loading model {model_name}...")
prompter = Prompt().load_model(model_name)
for i, contract in enumerate(os.listdir(contracts_path)):
# exclude potential mac os created file artifact in folder path
if contract != ".DS_Store":
print("\nAnalyzing contract: ", str(i+1), contract)
print("LLM Responses:")
for key, value in query_list.items():
# contract is parsed, text-chunked, and then filtered by topic key
source = prompter.add_source_document(contracts_path, contract, query=key)
# calling the LLM with 'source' information from the contract automatically packaged into the prompt
responses = prompter.prompt_with_source(value, prompt_name="just_the_facts", temperature=0.3)
for r, response in enumerate(responses):
print(key, ":", re.sub("[\n]"," ", response["llm_response"]).strip())
# We're done with this contract, clear the source from the prompt
prompter.clear_source_materials()
# Save jsonl report to jsonl to /prompt_history folder
print("\nPrompt state saved at: ", os.path.join(LLMWareConfig.get_prompt_path(),prompter.prompt_id))
prompter.save_state()
#Save csv report that includes the model, response, prompt, and evidence for human-in-the-loop review
csv_output = HumanInTheLoop(prompter).export_current_interaction_to_csv()
print("csv output - ", csv_output)
if __name__ == "__main__":
bling_models = ["llmware/bling-1b-0.1", "llmware/bling-1.4b-0.1", "llmware/bling-falcon-1b-0.1",
"llmware/bling-sheared-llama-2.7b-0.1", "llmware/bling-sheared-llama-1.3b-0.1",
"llmware/bling-red-pajamas-3b-0.1", "llmware/bling-stable-lm-3b-4e1t-0.1"]
# use local cpu model
model = bling_models[0]
contract_analysis_on_laptop(model)