forked from AlgoHunt/Face-Xray
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbi_online_generation.py
251 lines (200 loc) · 9.34 KB
/
bi_online_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import dlib
from skimage import io
from skimage import transform as sktransform
import numpy as np
from matplotlib import pyplot as plt
import json
import os
import random
from PIL import Image
from imgaug import augmenters as iaa
from .DeepFakeMask import dfl_full,facehull,components,extended
import cv2
import tqdm
def name_resolve(path):
name = os.path.splitext(os.path.basename(path))[0]
vid_id, frame_id = name, name
return vid_id, frame_id
def total_euclidean_distance(a,b):
assert len(a.shape) == 2
return np.sum(np.linalg.norm(a-b,axis=1))
def random_get_hull(landmark,img1):
hull_type = random.choice([0,1,2,3])
if hull_type == 0:
mask = dfl_full(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
return mask/255
elif hull_type == 1:
mask = extended(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
return mask/255
elif hull_type == 2:
mask = components(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
return mask/255
elif hull_type == 3:
mask = facehull(landmarks=landmark.astype('int32'),face=img1, channels=3).mask
return mask/255
def random_erode_dilate(mask, ksize=None):
if random.random()>0.5:
if ksize is None:
ksize = random.randint(1,21)
if ksize % 2 == 0:
ksize += 1
mask = np.array(mask).astype(np.uint8)*255
kernel = np.ones((ksize,ksize),np.uint8)
mask = cv2.erode(mask,kernel,1)/255
else:
if ksize is None:
ksize = random.randint(1,5)
if ksize % 2 == 0:
ksize += 1
mask = np.array(mask).astype(np.uint8)*255
kernel = np.ones((ksize,ksize),np.uint8)
mask = cv2.dilate(mask,kernel,1)/255
return mask
# borrow from https://github.com/MarekKowalski/FaceSwap
def blendImages(src, dst, mask, featherAmount=0.2):
maskIndices = computeMaskIndices(src, dst, mask)
src_mask = np.ones_like(mask)
dst_mask = np.zeros_like(mask)
maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))
faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
featherAmount = featherAmount * np.max(faceSize)
hull = cv2.convexHull(maskPts)
dists = np.zeros(maskPts.shape[0])
for i in range(maskPts.shape[0]):
dists[i] = cv2.pointPolygonTest(hull, (maskPts[i, 0], maskPts[i, 1]), True)
weights = np.clip(dists / featherAmount, 0, 1)
composedImg = np.copy(dst)
composedImg[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * dst[maskIndices[0], maskIndices[1]]
composedMask = np.copy(dst_mask)
composedMask[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * src_mask[maskIndices[0], maskIndices[1]] + (
1 - weights[:, np.newaxis]) * dst_mask[maskIndices[0], maskIndices[1]]
return composedImg, composedMask
def computeMaskIndices(src, dst, mask):
maskIndices = np.where(mask != 0)
maxSize = min(src.shape[0], dst.shape[0])
maskIndices[0][maskIndices[0] >= maxSize] = maxSize - 1
maxSize = min(src.shape[1], dst.shape[1])
maskIndices[1][maskIndices[1] >= maxSize] = maxSize - 1
return maskIndices
# borrow from https://github.com/MarekKowalski/FaceSwap
def colorTransfer(src, dst, mask):
transferredDst = np.copy(dst)
maskIndices = computeMaskIndices(src, dst, mask)
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.int32)
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.int32)
meanSrc = np.mean(maskedSrc, axis=0)
meanDst = np.mean(maskedDst, axis=0)
maskedDst = maskedDst - meanDst
maskedDst = maskedDst + meanSrc
maskedDst = np.clip(maskedDst, 0, 255)
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst
return transferredDst
class BIOnlineGeneration():
def __init__(self):
with open('precomuted_landmarks.json', 'r') as f:
self.landmarks_record = json.load(f)
for k,v in self.landmarks_record.items():
self.landmarks_record[k] = np.array(v)
# extract all frame from all video in the name of {videoid}_{frameid}
self.data_list = [
'000_0000.png',
'001_0000.png'
] * 10000
# predefine mask distortion
self.distortion = iaa.Sequential([iaa.PiecewiseAffine(scale=(0.01, 0.15))])
def gen_one_datapoint(self):
background_face_path = random.choice(self.data_list)
data_type = 'real' if random.randint(0,1) else 'fake'
if data_type == 'fake' :
face_img,mask = self.get_blended_face(background_face_path)
mask = ( 1 - mask ) * mask * 4
else:
face_img = io.imread(background_face_path)
mask = np.zeros((317, 317, 1))
# randomly downsample after BI pipeline
if random.randint(0,1):
aug_size = random.randint(64, 317)
face_img = Image.fromarray(face_img)
if random.randint(0,1):
face_img = face_img.resize((aug_size, aug_size), Image.BILINEAR)
else:
face_img = face_img.resize((aug_size, aug_size), Image.NEAREST)
face_img = face_img.resize((317, 317),Image.BILINEAR)
face_img = np.array(face_img)
# random jpeg compression after BI pipeline
if random.randint(0,1):
quality = random.randint(60, 100)
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
face_img_encode = cv2.imencode('.jpg', face_img, encode_param)[1]
face_img = cv2.imdecode(face_img_encode, cv2.IMREAD_COLOR)
face_img = face_img[60:317,30:287,:]
mask = mask[60:317,30:287,:]
# random flip
if random.randint(0,1):
face_img = np.flip(face_img,1)
mask = np.flip(mask,1)
return face_img,mask,data_type
def get_blended_face(self,background_face_path):
background_face = io.imread(background_face_path)
background_landmark = self.landmarks_record[background_face_path]
foreground_face_path = self.search_similar_face(background_landmark,background_face_path)
foreground_face = io.imread(foreground_face_path)
# down sample before blending
aug_size = random.randint(128,317)
background_landmark = background_landmark * (aug_size/317)
foreground_face = sktransform.resize(foreground_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
background_face = sktransform.resize(background_face,(aug_size,aug_size),preserve_range=True).astype(np.uint8)
# get random type of initial blending mask
mask = random_get_hull(background_landmark, background_face)
# random deform mask
mask = self.distortion.augment_image(mask)
mask = random_erode_dilate(mask)
# filte empty mask after deformation
if np.sum(mask) == 0 :
raise NotImplementedError
# apply color transfer
foreground_face = colorTransfer(background_face, foreground_face, mask*255)
# blend two face
blended_face, mask = blendImages(foreground_face, background_face, mask*255)
blended_face = blended_face.astype(np.uint8)
# resize back to default resolution
blended_face = sktransform.resize(blended_face,(317,317),preserve_range=True).astype(np.uint8)
mask = sktransform.resize(mask,(317,317),preserve_range=True)
mask = mask[:,:,0:1]
return blended_face,mask
def search_similar_face(self,this_landmark,background_face_path):
vid_id, frame_id = name_resolve(background_face_path)
min_dist = 99999999
# random sample 5000 frame from all frams:
sample_size = min(5000, len(self.data_list))
all_candidate_path = random.sample(self.data_list, k=sample_size)
# filter all frame that comes from the same video as background face
all_candidate_path = filter(lambda k:name_resolve(k)[0] != vid_id, all_candidate_path)
all_candidate_path = list(all_candidate_path)
# loop throungh all candidates frame to get best match
for candidate_path in all_candidate_path:
candidate_landmark = self.landmarks_record[os.path.basename(candidate_path)].astype(np.float32)
candidate_distance = total_euclidean_distance(candidate_landmark, this_landmark)
if candidate_distance < min_dist:
min_dist = candidate_distance
min_path = candidate_path
return min_path
if __name__ == '__main__':
ds = BIOnlineGeneration()
from tqdm import tqdm
all_imgs = []
for _ in tqdm(range(50)):
img,mask,label = ds.gen_one_datapoint()
mask = np.repeat(mask,3,2)
mask = (mask*255).astype(np.uint8)
img_cat = np.concatenate([img,mask],1)
all_imgs.append(img_cat)
all_in_one = Image.new('RGB', (2570,2570))
for x in range(5):
for y in range(10):
idx = x*10+y
im = Image.fromarray(all_imgs[idx])
dx = x*514
dy = y*257
all_in_one.paste(im, (dx,dy))
all_in_one.save("all_in_one.jpg")