-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiagonalNumber.java
65 lines (60 loc) · 1.79 KB
/
DiagonalNumber.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import java.util.Arrays;
public class DiagonalNumber {
// you are given a n*n matrix in which the elements 1 - n^2 are filled in sorted order diagonally
/*
* 1 3 6 10 15
* 1 2 5 9 14 19
* 2 4 8 13 18 22
* 3 7 12 17 21 24
* 4 11 16 20 23 25
* 5 6 7 8 9
* */
// you are provided with an integer n and a set of q queries
// for each query you have to return the number of diagonal in which that number exists
public static void main(String[] args) {
long[] query = {1,16,25};
int[] ans = solve(5,query.length,query);
System.out.println(Arrays.toString(ans));
}
public static int[] solve(int n, int q, long[] query)
{
int[] ans = new int[q];
for(int i=0;i<q;i++)
{
long x = query[i];
long start = 1;
long end = 2*n-1;
boolean flag = false;
long a = (long)((n+1)*n)/2;
if(x>a)
{
x = (long)n*n - x +1;
flag = true;
}
while(start<=end)
{
long mid = start + (end - start)/2;
long dStart = (mid-1)*mid/2+1;
long dEnd = (mid+1)*mid/2;
if(x<dStart)
{
end = mid-1;
}
else if(x>dEnd)
{
start = mid+1;
}
else
{
if(flag)
{
mid = 2*n - mid;
}
ans[i] = (int)mid;
break;
}
}
}
return ans;
}
}