-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsteppermotor.cpp
385 lines (346 loc) · 10.9 KB
/
steppermotor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#include "steppermotor.h"
#include "igpio.h"
#include <cmath>
#include <cstdint>
#include <pthread.h>
namespace mgo {
StepperMotor::StepperMotor(
IGpio& gpio,
int stepPin,
int reversePin,
int enablePin,
long stepsPerRevolution,
double conversionFactor,
double maxRpm,
bool usingMockLinearScale, /* = true */
uint32_t mockLinearScaleStepsPerMm /* = 200 */)
: m_gpio(gpio)
, m_stepsPerRevolution(stepsPerRevolution)
, m_conversionFactor(conversionFactor)
, m_maxRpm(maxRpm)
, m_usingMockLinearScale(usingMockLinearScale)
, m_mockLinearScaleStepsPerMm(mockLinearScaleStepsPerMm)
{
m_motorNumber = m_gpio.addMotor(stepPin, reversePin, enablePin);
// Ensure we start off with the right direction
m_gpio.setReversePin(
m_motorNumber, m_direction == Direction::forward ? PinState::low : PinState::high);
// Start the thread
std::thread t([&]() {
Direction oldDirection = Direction::forward;
for (;;) {
int delay;
uint32_t startTick = m_gpio.getTick();
{ // scope for lock_guard
// When in this scope we can assume all member
// variables can be written and read from freely
// without them being changed externally. Other
// member functions must lock the mutex m_mtx
// before changing any member variables.
std::lock_guard<std::mutex> mtx(m_mtx);
if (m_terminateThread) {
break;
}
if (m_stop || m_rpm == 0.0) {
m_targetStep = long(m_currentReportedStep);
m_stop = false;
m_busy = false;
} else if (!m_busy && m_synchronise && m_synchroniseMotor) {
synchronise();
}
if (m_targetStep != m_currentReportedStep) {
if (oldDirection != m_direction) {
// Ensure direction pin is set correctly
m_gpio.setReversePin(
m_motorNumber,
m_direction == Direction::forward ? PinState::low : PinState::high);
oldDirection = m_direction;
}
// Do step pulse
m_gpio.setStepPin(m_motorNumber, PinState::high);
// Spin for first delay amount:
while (m_gpio.getTick() - startTick < static_cast<uint32_t>(m_delay))
;
m_gpio.setStepPin(m_motorNumber, PinState::low);
if (m_targetStep < m_currentReportedStep) {
// we only start counting steps once the slack of the backlash
// compensation has been taken up
if (m_backlashPosition == 0) {
--m_currentReportedStep;
} else {
--m_backlashPosition;
}
--m_currentActualStep; // This is only used for testing
} else {
if (m_backlashPosition == m_backlashSize) {
++m_currentReportedStep;
} else {
++m_backlashPosition;
}
++m_currentActualStep; // This is only used for testing
}
if (m_currentReportedStep == m_targetStep) {
m_busy = false;
}
}
delay = m_delay; // remember delay value while in mtx scope
} // scope for lock_guard
if (m_busy && m_useRamping && m_rampedRpm < m_rpm) {
m_rampedRpm += 0.1;
if (m_rampedRpm > m_rpm) {
m_rampedRpm = m_rpm;
}
m_delay = calculateDelayValue(m_rampedRpm);
}
// We always perform the second delay regardless of
// whether we're stepping, to give the main thread a
// chance to grab the mutex if needed
// Spin until we get to the right time
while (m_gpio.getTick() - startTick < static_cast<uint32_t>(2 * delay))
;
}
} // thread end
);
// Store the thread's handle in m_thread
m_thread.swap(t);
// Set the thread's scheduling to be real-time; cannot do this portably:
sched_param schedParams;
schedParams.sched_priority = ::sched_get_priority_max(SCHED_RR);
::pthread_setschedparam(m_thread.native_handle(), SCHED_RR, &schedParams);
}
StepperMotor::~StepperMotor()
{
m_terminateThread = true;
m_thread.join();
}
void StepperMotor::goToStep(long step, bool noLock)
{
if (!noLock) {
std::lock_guard<std::mutex> mtx(m_mtx);
}
if (m_busy) {
// We ignore any request to go to a location if
// we are already stepping. The client code can
// issue a stop if needed before changing target
// step location.
return;
}
if (m_currentReportedStep == step) {
return;
}
m_direction = Direction::forward;
if (step < m_currentReportedStep) {
m_direction = Direction::reverse;
}
m_busy = true;
m_stop = false;
m_targetStep = step;
if (m_usingMockLinearScale) {
#ifdef FAKE
m_gpio.scaleGoToPositionMm(step * m_conversionFactor);
double motorSpeedMmPerSec = getSpeed() / 60.0;
// Say we are moving at 0.5 mm/sec then steps per sec should be 200 * 0.5
// So motorSpeed * stepsPerMm.
m_gpio.scaleSetSpeedStepsPerSec(motorSpeedMmPerSec * m_mockLinearScaleStepsPerMm);
#endif
}
}
void StepperMotor::stop()
{
{
std::lock_guard<std::mutex> mtx(m_mtx);
m_stop = true;
}
// Wait before returning to allow the stop to be acted on
// by the stepper thread
m_gpio.delayMicroSeconds(50'000);
}
void StepperMotor::setRpm(double rpm, bool noLock)
{
if (rpm < 0) {
rpm = 0;
}
if (rpm > m_maxRpm) {
rpm = m_maxRpm;
}
// NB m_delay (in µsecs) is used TWICE per thread loop
if (!noLock) {
std::lock_guard<std::mutex> mtx(m_mtx);
}
if (rpm < 0.00001) {
// Arbitrarily anything lower than this
// and we assune zero was required
m_rpm = 0;
m_rampedRpm = 0;
m_stop = true;
return;
}
if (m_useRamping && rpm > m_rpm) {
// We don't start ramping from zero
m_rampedRpm = m_maxRpm * 0.4;
if (m_rampedRpm > rpm) {
m_rampedRpm = rpm;
}
}
m_rpm = rpm;
m_delay = calculateDelayValue(m_rpm);
#ifdef FAKE
double motorSpeedMmPerSec = getSpeed() / 60.0;
m_gpio.scaleSetSpeedStepsPerSec(motorSpeedMmPerSec * m_mockLinearScaleStepsPerMm);
#endif
}
void StepperMotor::setSpeed(double speed, bool noLock)
{
const double rpm = std::abs(speed / m_conversionFactor / m_stepsPerRevolution);
setRpm(rpm, noLock);
}
double StepperMotor::getRpm()
{
return m_rpm;
}
double StepperMotor::getSpeed() const
{
return std::abs(m_rpm * m_stepsPerRevolution * m_conversionFactor);
}
double StepperMotor::getMaxRpm()
{
return m_maxRpm;
}
int StepperMotor::getDelay()
{
std::lock_guard<std::mutex> mtx(m_mtx);
return m_delay;
}
long StepperMotor::getCurrentStep() const
{
return m_currentReportedStep;
}
long StepperMotor::getTargetStep() const
{
return m_targetStep;
}
void StepperMotor::zeroPosition()
{
{
std::lock_guard<std::mutex> mtx(m_mtx);
m_currentReportedStep = 0L;
m_targetStep = 0L;
}
stop();
}
void StepperMotor::wait()
{
while (m_busy) {
m_gpio.delayMicroSeconds(10'000);
}
}
bool StepperMotor::isRunning() const
{
return m_busy;
}
Direction StepperMotor::getDirection() const
{
return m_direction;
}
double StepperMotor::getPosition() const
{
return m_currentReportedStep * m_conversionFactor;
}
double StepperMotor::getPosition(long step) const
{
return step * m_conversionFactor;
}
void StepperMotor::goToPosition(double mm, bool noLock)
{
goToStep(mm / m_conversionFactor, noLock);
}
void StepperMotor::setPosition(double mm)
{
{
std::lock_guard<std::mutex> mtx(m_mtx);
long step = mm / m_conversionFactor;
m_currentReportedStep = step;
m_targetStep = step;
}
stop();
}
void StepperMotor::setBacklashCompensation(unsigned int compensation, unsigned int currentPosition)
{
std::lock_guard<std::mutex> mtx(m_mtx);
m_backlashSize = compensation;
if (currentPosition > compensation) {
m_backlashPosition = compensation;
} else {
m_backlashPosition = currentPosition;
}
}
long StepperMotor::getCurrentStepWithoutBacklashCompensation() const
{
return m_currentActualStep;
}
double StepperMotor::getRampedSpeed()
{
return std::abs(m_rampedRpm * m_stepsPerRevolution * m_conversionFactor);
}
double StepperMotor::getConversionFactor() const
{
return m_conversionFactor;
}
double StepperMotor::calculateDelayValue(double rpm)
{
int delay = std::round(500'000.0 / (static_cast<double>(m_stepsPerRevolution) * (rpm / 60.0)));
if (delay < 10) {
// Avoid very small delay values as the stepper
// motor won't be able to keep up
delay = 10;
}
return delay;
}
void StepperMotor::enableRamping(bool flag)
{
std::lock_guard<std::mutex> mtx(m_mtx);
m_useRamping = flag;
}
void StepperMotor::synchroniseOn(
const StepperMotor* other,
std::function<double(double, double)> func,
bool useZeroAsSyncStartPos // = false
)
{
std::lock_guard<std::mutex> mtx(m_mtx);
m_synchronise = true;
m_synchroniseMotor = other;
m_synchroniseFunction = func;
m_useZeroAsSyncStartPos = useZeroAsSyncStartPos;
}
void StepperMotor::synchroniseOff()
{
std::lock_guard<std::mutex> mtx(m_mtx);
m_synchronise = false;
m_syncFirstCall = true;
}
void StepperMotor::synchronise()
{
// If we know the speed of the other motor, and can
// determine the delta of its position from last time,
// we can set our speed as a ratio of the other's speed
// to our distance to be moved.
if (m_syncFirstCall) {
m_syncFirstCall = false;
m_syncOtherStartPos = m_synchroniseMotor->getPosition();
if (m_useZeroAsSyncStartPos) {
m_syncStartPos = 0.0;
} else {
m_syncStartPos = getPosition();
}
return;
}
double otherCurrentPos = m_synchroniseMotor->getPosition();
double otherPositionDelta = otherCurrentPos - m_syncOtherStartPos;
double newPosDelta = m_synchroniseFunction(otherPositionDelta, otherCurrentPos);
// We set the speed higher than it needs to be to ensure we
// can keep up
setSpeed(10 * m_synchroniseMotor->getSpeed() * (newPosDelta / otherPositionDelta) + 10, true);
goToPosition(m_syncStartPos + newPosDelta, true);
}
} // end namespace