forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse_dot_vector.py
71 lines (50 loc) · 1.56 KB
/
sparse_dot_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#! /usr/bin/env python3
"""
Suppose we have very large sparse vectors, which contains a lot of zeros and double .
find a data structure to store them
get the dot product of them
"""
def vector_to_index_value_list(vector):
return [(i, v) for i, v in enumerate(vector) if v != 0.0]
def dot_product(iv_list1, iv_list2):
product = 0
p1 = len(iv_list1) - 1
p2 = len(iv_list2) - 1
while p1 >= 0 and p2 >= 0:
i1, v1 = iv_list1[p1]
i2, v2 = iv_list2[p2]
if i1 < i2:
p1 -= 1
elif i2 < i1:
p2 -= 1
else:
product += v1 * v2
p1 -= 1
p2 -= 1
return product
def __test_simple():
print(dot_product(vector_to_index_value_list([1., 2., 3.]),
vector_to_index_value_list([0., 2., 2.])))
# 10
def __test_time():
vector_length = 1024
vector_count = 1024
nozero_counut = 10
def random_vector():
import random
vector = [0 for _ in range(vector_length)]
for i in random.sample(range(vector_length), nozero_counut):
vector[i] = random.random()
return vector
vectors = [random_vector() for _ in range(vector_count)]
iv_lists = [vector_to_index_value_list(vector) for vector in vectors]
import time
time_start = time.time()
for i in range(vector_count):
for j in range(i):
dot_product(iv_lists[i], iv_lists[j])
time_end = time.time()
print(time_end - time_start, 'seconds')
if __name__ == '__main__':
__test_simple()
__test_time()