-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathconfig_user.py
207 lines (167 loc) · 6.07 KB
/
config_user.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Configuration File
from __future__ import division
import math
import collections
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
testingMode = False # suppresses figure generation, outputs from main*.py are not printed
makeFigure = True
makeMovie = False
startWithEmptyMap = True
makeRandObs = False
useMovingGoals = True
restrictVerticalMovement = True
useHierarchicalPlanning = True
numHierLevels = 0
percentFixedRandomObstacles = 0
safetymargin = 1
cX, cY, cZ = 1, 1, 2 # cX and cY currently are unused - modify computeCost if desired
heuristicScale = 1.01
searchRadius = 20
refinementDistance = math.ceil(searchRadius * 1) # must be an integer
t_max = float('inf') # Max time to spend on path-finding, in milliseconds. Enter inf to prevent restriction
sizeX = 64
sizeY = 64
sizeZ = 64
mapscale = 2
start = (3*mapscale , 3*mapscale, 6*mapscale) # start coordinates
goals = np.array([[62., 62., 6., 0.]]) * mapscale # goal coordinates
# Configure Moving Goals
initX = [60, 20]# [12, 6]
initY = [50, 50]#[3, 2]
initZ = [6, 6]#[4, 7]
T = [5, 4]#[5, 2]
# Fixed Individual Obstacles
obstacles = []
# Fixed Rectangular Obstacles
rXstart = [8, 12, 15, 35, 41, 49]
rYstart = [2, 15, 35, 10, 20, 47]
rZstart = [1, 1, 1, 1, 1, 1]
rXdim = [4, 20, 30, 5, 8, 6]
rYdim = [9, 12, 8, 5, 8, 6]
rZdim = [30, 8, 15, 28, 20, 28]
# rXstart = []
# rYstart = []
# rZstart = []
# rXdim = []
# rYdim = []
# rZdim = []
vidname = 'dstarVid'
fps = 10 # higher = faster playback speed
dpi = 500 # higher = better quality, slower runtime
imgformat = 'png' # currently only works for png
# Generate Random Dynamic Obstacles
randomint = np.random.random_integers
minObs = 5
maxObs = 50
maxPercent = 5
seedDyn = np.random.randint(0,1000)
#seedDyn = np.random.randint(0,10)
#seedDyn = 432
# Generate Random Fixed Obstacles
num2gen = int(round(percentFixedRandomObstacles/100 * sizeX*sizeY*sizeZ))
seedStatic = np.random.random_integers(0,1000)
#seedStatic = np.random.random_integers(0,10
#seedStatic = 141
"""
====================================================================================
================== Variables below this line are not user inputs ===================
============== They are here for configuration or to create variables ==============
====================================================================================
============== The " # Additional variables " block at the very bottom =============
============== is the exception to this and may be modified if desired =============
====================================================================================
"""
# if testingEnvironment == '3DF_20':
# sizeX, sizeY, sizeZ = 150, 150, 150
# start = (75,75,75)
# goals = np.array([[150, 150, 150, 0]])
# percentFixedRandomObstacles = 20
# restrictVerticalMovement = False
# cX, cY, cZ = 1, 1, 1
# searchRadius = 7
# percentFixedRandomObstacles = 20
#
# elif testingEnvironment == '3DF_50':
# sizeX, sizeY, sizeZ = 150, 150, 150
# start = (75,75,75)
# goals = np.array([[150, 150, 150, 0]])
# percentFixedRandomObstacles = 20
# restrictVerticalMovement = False
# cX, cY, cZ = 1, 1, 1
# searchRadius = 7
# percentFixedRandomObstacles = 50
#
# elif testingEnvironment == 'city':
# sizeX = 64
# sizeY = 64
# sizeZ = 64
# start = (3*mapscale , 4*mapscale, 6*mapscale)
# goals = np.array([[62., 60., 6., 0.]]) * mapscale
# percentFixedRandomObstacles = 0
#
# rXstart = [8, 12, 15, 35, 41, 49]
# rYstart = [2, 15, 35, 10, 20, 47]
# rZstart = [1, 1, 1, 1, 1, 1]
# rXdim = [4, 20, 30, 5, 8, 6]
# rYdim = [9, 12, 8, 5, 8, 6]
# rZdim = [30, 8, 15, 28, 20, 28]
#
# elif testingEnvironment == 'random':
# sizeX = 150
# sizeY = 150
# sizeZ = 150
# start = (5 , 5, sizeZ/2)
# goals = np.array([[sizeX-5., sizeY-5., sizeZ/2., 0.]])
# Modifying by scale factor
initX = [mapscale*point for point in initX]
initY = [mapscale*point for point in initY]
initZ = [mapscale*point for point in initZ]
rXstart = [mapscale*(point) for point in rXstart if point >= 1]
rYstart = [mapscale*(point) for point in rYstart if point >= 1]
rZstart = [point for point in rZstart if point >= 1]
rXdim = [mapscale*(point) for point in rXdim if point <= sizeX]
rYdim = [mapscale*(point) for point in rYdim if point <= sizeY]
rZdim = [mapscale*(point) for point in rZdim if point <= sizeZ]
sizeX *= mapscale
sizeY *= mapscale
sizeZ *= mapscale
if testingMode:
makeFigure = False
makeMovie = False
if makeMovie:
makeFigure = True
if not useMovingGoals:
initX = []
initY = []
initZ = []
T = []
goalsVisited, goalhandles, numGoals, goal = [], [], [], []
stepCount = 1 # number of total iterations
number_of_obstacles = 0 # for genRandObs function
numNodes = sizeX*sizeY*sizeZ
goalMoved = False
numlevels = 0
# Set up initial heading angles to factor in direction of travel
oldstart = None
# Set up UAV map and plot
map_ = collections.defaultdict(lambda : 0)
costMatrix = collections.defaultdict(lambda: 1)
if makeFigure:
fig1 = plt.figure()
#ax1 = fig1.add_subplot(111, projection='3d')
ax1 = fig1.gca(projection='3d')
# Used to save some variables
hdl = []
closed_list = 0
output = {}
# Additional variables
zf1, zf2 = 1, 0 # provides more flexibility over coarse z-movement; zf1 = multiplier, zf2 = added constant
# use (1,0) for default, or (0,x) to set coarse z-successors at a distance of x
distancerequirement = 7 # used in findPath function. determines cluster size used for coarse paths
# shorter = faster, but may have longer paths
# too small and it may not find a path, so >=6 recommended
minclustersize = 4 # represents dimension of smallest cluster in terms of L0 nodes
alpha = 0.5 # use 0.5 for centripetal splines
splinePoints = 5 # Enter 2 to not use splines, otherwise 5 is recommended