@inproceedings{lin2019bmn,
title={Bmn: Boundary-matching network for temporal action proposal generation},
author={Lin, Tianwei and Liu, Xiao and Li, Xin and Ding, Errui and Wen, Shilei},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={3889--3898},
year={2019}
}
@article{zhao2017cuhk,
title={Cuhk \& ethz \& siat submission to activitynet challenge 2017},
author={Zhao, Y and Zhang, B and Wu, Z and Yang, S and Zhou, L and Yan, S and Wang, L and Xiong, Y and Lin, D and Qiao, Y and others},
journal={arXiv preprint arXiv:1710.08011},
volume={8},
year={2017}
}
配置文件 | 特征 | GPU 数量 | AR@100 | AUC | AP@0.5 | AP@0.75 | AP@0.95 | mAP | GPU 显存占用 (M) | 推理时间 (s) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bmn_400x100_9e_2x8_activitynet_feature | cuhk_mean_100 | 2 | 75.28 | 67.22 | 42.47 | 31.31 | 9.92 | 30.34 | 5420 | 3.27 | ckpt | log | json |
mmaction_video | 2 | 75.43 | 67.22 | 42.62 | 31.56 | 10.86 | 30.77 | 5420 | 3.27 | ckpt | log | json | |
mmaction_clip | 2 | 75.35 | 67.38 | 43.08 | 32.19 | 10.73 | 31.15 | 5420 | 3.27 | ckpt | log | json | |
BMN-official (for reference)* | cuhk_mean_100 | - | 75.27 | 67.49 | 42.22 | 30.98 | 9.22 | 30.00 | - | - | - | - | - |
- 注:
- 这里的 GPU 数量 指的是得到模型权重文件对应的 GPU 个数。默认地,MMAction2 所提供的配置文件对应使用 8 块 GPU 进行训练的情况。 依据 线性缩放规则,当用户使用不同数量的 GPU 或者每块 GPU 处理不同视频个数时,需要根据批大小等比例地调节学习率。 如,lr=0.01 对应 4 GPUs x 2 video/gpu,以及 lr=0.08 对应 16 GPUs x 4 video/gpu。
- 对于 特征 这一列,
cuhk_mean_100
表示所使用的特征为利用 anet2016-cuhk 代码库抽取的,被广泛利用的 CUHK ActivityNet 特征,mmaction_video
和mmaction_clip
分布表示所使用的特征为利用 MMAction 抽取的,视频级别 ActivityNet 预训练模型的特征;视频片段级别 ActivityNet 预训练模型的特征。 - MMAction2 使用 ActivityNet2017 未剪辑视频分类赛道上 anet_cuhk_2017 所提交的结果来为每个视频的时序动作候选指定标签,以用于 BMN 模型评估。
*MMAction2 在 原始代码库 上训练 BMN,并且在 anet_cuhk_2017 的对应标签上评估时序动作候选生成和时序检测的结果。
对于数据集准备的细节,用户可参考 数据集准备文档 中的 ActivityNet 特征部分。
用户可以使用以下指令进行模型训练。
python tools/train.py ${CONFIG_FILE} [optional arguments]
例如:在 ActivityNet 特征上训练 BMN。
python tools/train.py configs/localization/bmn/bmn_400x100_2x8_9e_activitynet_feature.py
更多训练细节,可参考 基础教程 中的 训练配置 部分。
用户可以使用以下指令进行模型测试。
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
例如:在 ActivityNet 特征上测试 BMN 模型。
# 注:如果需要进行指标验证,需确测试数据的保标注文件包含真实标签
python tools/test.py configs/localization/bmn/bmn_400x100_2x8_9e_activitynet_feature.py checkpoints/SOME_CHECKPOINT.pth --eval AR@AN --out results.json
用户也可以利用 anet_cuhk_2017 的预测文件评估模型时序检测的结果,并生成时序动作候选文件(即命令中的 results.json
)
python tools/analysis/report_map.py --proposal path/to/proposal_file
注:
-
(可选项) 用户可以使用以下指令生成格式化的时序动作候选文件,该文件可被送入动作识别器中(目前只支持 SSN 和 P-GCN,不包括 TSN, I3D 等),以获得时序动作候选的分类结果。
python tools/data/activitynet/convert_proposal_format.py
更多测试细节,可参考 基础教程 中的 测试某个数据集 部分。