-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathc3d_sports1m_16x1x1_45e_ucf101_rgb.py
95 lines (94 loc) · 3.15 KB
/
c3d_sports1m_16x1x1_45e_ucf101_rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
_base_ = '../../_base_/models/c3d_sports1m_pretrained.py'
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'data/ucf101/rawframes'
data_root_val = 'data/ucf101/rawframes'
split = 1 # official train/test splits. valid numbers: 1, 2, 3
ann_file_train = f'data/ucf101/ucf101_train_split_{split}_rawframes.txt'
ann_file_val = f'data/ucf101/ucf101_val_split_{split}_rawframes.txt'
ann_file_test = f'data/ucf101/ucf101_val_split_{split}_rawframes.txt'
img_norm_cfg = dict(mean=[104, 117, 128], std=[1, 1, 1], to_bgr=False)
train_pipeline = [
dict(type='SampleFrames', clip_len=16, frame_interval=1, num_clips=1),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(128, 171)),
dict(type='RandomCrop', size=112),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(
type='SampleFrames',
clip_len=16,
frame_interval=1,
num_clips=1,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(128, 171)),
dict(type='CenterCrop', crop_size=112),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
test_pipeline = [
dict(
type='SampleFrames',
clip_len=16,
frame_interval=1,
num_clips=10,
test_mode=True),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(128, 171)),
dict(type='CenterCrop', crop_size=112),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
data = dict(
videos_per_gpu=30,
workers_per_gpu=2,
test_dataloader=dict(videos_per_gpu=1),
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
pipeline=val_pipeline),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
data_prefix=data_root_val,
pipeline=test_pipeline))
# optimizer
optimizer = dict(
type='SGD', lr=0.001, momentum=0.9,
weight_decay=0.0005) # this lr is used for 8 gpus
optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[20, 40])
total_epochs = 45
checkpoint_config = dict(interval=5)
evaluation = dict(
interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook'),
])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/c3d_sports1m_16x1x1_45e_ucf101_split_{split}_rgb/'
load_from = None
resume_from = None
workflow = [('train', 1)]