Skip to content

Latest commit

 

History

History
81 lines (56 loc) · 4.77 KB

README_zh-CN.md

File metadata and controls

81 lines (56 loc) · 4.77 KB

ResNet for Audio

简介

@article{xiao2020audiovisual,
  title={Audiovisual SlowFast Networks for Video Recognition},
  author={Xiao, Fanyi and Lee, Yong Jae and Grauman, Kristen and Malik, Jitendra and Feichtenhofer, Christoph},
  journal={arXiv preprint arXiv:2001.08740},
  year={2020}
}

模型库

Kinetics-400

配置文件 n_fft GPU 数量 主干网络 预训练 top1 acc/delta top5 acc/delta 推理时间 (video/s) GPU 显存占用 (M) ckpt log json
tsn_r18_64x1x1_100e_kinetics400_audio_feature 1024 8 ResNet18 None 19.7 35.75 x 1897 ckpt log json
tsn_r18_64x1x1_100e_kinetics400_audio_feature + tsn_r50_video_320p_1x1x3_100e_kinetics400_rgb 1024 8 ResNet(18+50) None 71.50(+0.39) 90.18(+0.14) x x x x x

注:

  1. 这里的 GPU 数量 指的是得到模型权重文件对应的 GPU 个数。默认地,MMAction2 所提供的配置文件对应使用 8 块 GPU 进行训练的情况。 依据 线性缩放规则,当用户使用不同数量的 GPU 或者每块 GPU 处理不同视频个数时,需要根据批大小等比例地调节学习率。 如,lr=0.01 对应 4 GPUs x 2 video/gpu,以及 lr=0.08 对应 16 GPUs x 4 video/gpu。
  2. 这里的 推理时间 是根据 基准测试脚本 获得的,采用测试时的采帧策略,且只考虑模型的推理时间, 并不包括 IO 时间以及预处理时间。对于每个配置,MMAction2 使用 1 块 GPU 并设置批大小(每块 GPU 处理的视频个数)为 1 来计算推理时间。
  3. 我们使用的 Kinetics400 验证集包含 19796 个视频,用户可以从 验证集视频 下载这些视频。同时也提供了对应的 数据列表 (每行格式为:视频 ID,视频帧数目,类别序号)以及 标签映射 (类别序号到类别名称)。

对于数据集准备的细节,用户可参考 数据集准备文档 中的准备音频部分。

如何训练

用户可以使用以下指令进行模型训练。

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: 以一个确定性的训练方式,辅以定期的验证过程进行 ResNet 模型在 Kinetics400 音频数据集上的训练。

python tools/train.py configs/audio_recognition/tsn_r50_64x1x1_100e_kinetics400_audio_feature.py \
    --work-dir work_dirs/tsn_r50_64x1x1_100e_kinetics400_audio_feature \
    --validate --seed 0 --deterministic

更多训练细节,可参考 基础教程 中的 训练配置 部分。

如何测试

用户可以使用以下指令进行模型测试。

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

例如:在 Kinetics400 音频数据集上测试 ResNet 模型,并将结果导出为一个 json 文件。

python tools/test.py configs/audio_recognition/tsn_r50_64x1x1_100e_kinetics400_audio_feature.py \
    checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
    --out result.json

更多测试细节,可参考 基础教程 中的 测试某个数据集 部分。

融合

对于多模态融合,用户可以使用这个 脚本,其命令大致为:

python tools/analysis/report_accuracy.py --scores ${AUDIO_RESULT_PKL} ${VISUAL_RESULT_PKL} --datalist data/kinetics400/kinetics400_val_list_rawframes.txt --coefficient 1 1
  • AUDIO_RESULT_PKL: tools/test.py 脚本通过 --out 选项存储的输出文件。
  • VISUAL_RESULT_PKL: tools/test.py 脚本通过 --out 选项存储的输出文件。