-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment1.m
97 lines (87 loc) · 4.24 KB
/
experiment1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
% Hypothesis test example experiment
% - generate two point processes with less than two APs
% PP1. ISI maintained (t1, t1+alpha), t1 ~ unif(0.5,1)
% PP2. (t1, t2), t1 ~ unif(0.5,1), t2 ~ unif(0.5, 1) + alpha
% Both t1 and t2 can be lost with probability p
%
% $Id$
% Copyright 2009 iocane project. All rights reserved.
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% - Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
% - Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
% - Neither the name of the iocane project nor the names of its contributors
% may be used to endorse or promote products derived from this software
% without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
rand('seed', 20090523);
randn('seed', 20090523);
N = 40; % Number of realizations
M = 46; % Number of point processes per class
%M = 15; % Number of point processes per class
alpha = 0.3;
tWidth = 0.1;
tOffset = 0.2;
jitterSigma = 0.01;
duration = 2 * tOffset + tWidth + alpha;
p = 0.1;
lossyAPs = @(st,p)(st(rand(size(st)) >= p));
spikeTrains.N = N;
spikeTrains.duration = duration;
spikeTrains.source = '$Id$';
spikeTrains.data = cell(N, 1);
spikeTrains.samplingRate = Inf;
for kM = 1:M
t1a = rand(N, 1) * tWidth + tOffset;
t1b = rand(N, 1) * tWidth + tOffset;
t2a = t1a + alpha + randn(N, 1) * jitterSigma;
t2b = rand(N, 1) * tWidth + tOffset + alpha + randn(N, 1) * jitterSigma;
spikeTrains1(kM) = spikeTrains;
spikeTrains2(kM) = spikeTrains;
for k = 1:N
spikeTrains1(kM).data{k} = lossyAPs([t1a(k); t2a(k)], p);
spikeTrains2(kM).data{k} = lossyAPs([t1b(k); t2b(k)], p);
end
end
divMeasures = {...
%@divH, []; ...
%@divISF, []; ...
%@divSPD_stratified, divSPDParams_stratified('gaussian', '', 0.1e-3); ...
@divRatioChiSquare, divSPDParams_I('identity'); ...
@divRatioChiSquare, divSPDParams_I('int_exp', 0.067); ...
@divRatioChiSquare, divSPDParams_I('exp_int', 0.067); ...
@divRatioChiSquare, divSPDParams_I('int_exp', 0.67); ...
@divRatioChiSquare, divSPDParams_I('exp_int', 0.67); ...
%@divSPD, divSPDParams_I('int_exp'); ...
%@divSPD, divSPDParams_I('exp_int'); ...
%@divPD, []; ...
%@divCDF, divCDFParams(Inf, 'sum'); ...
%@divCDF, divCDFParams(2, 'sum'); ...
%@divL2Poisson, divL2PoissonParams(1e-3, 'fixed', 10e-3); ...
%@divL2Poisson, divL2PoissonParams(1e-3, 'hist'); ...
%@divPhi, divPhiParams('Hellinger', 'default', 10e-3);
%@divHilbertian, divHilbertianParams('Hellinger', 'default', 10e-3); ...
%@divHilbertian, divHilbertianParams('Hellinger', 'kNN', 1); ...
%@divHilbertian, divHilbertianParams('Hellinger', 'kNN', 2); ...
%@divHilbertian, divHilbertianParams('Hellinger', 'kNN', 3); ...
%@divHilbertian, divHilbertianParams('Hellinger', 'kNN', 4); ...
%@divHilbertian, divHilbertianParams('Hellinger', 'kNN', 6); ...
%@divHilbertian, divHilbertianParams('Hellinger', 'kNN', 10); ...
};
[p, power, dist, d12] = evaluateExperiment(spikeTrains1, spikeTrains2, M, 0.05, true, divMeasures);
%[p, power, dist, d12] = evaluateExperiment(spikeTrains1, spikeTrains2, M);
% vim:ts=8:sts=4:sw=4