-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrainingmonitor.py
67 lines (58 loc) · 2.47 KB
/
trainingmonitor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# import packages
from keras.callbacks import BaseLogger
from .myencoder import MyEncoder
import matplotlib.pyplot as plt
import numpy as np
import json
import os
class TrainingMonitor(BaseLogger):
def __init__(self, figPath, jsonPath = None, startAt = 0):
# store the output path for the figure , the path to the JSON
# serialized file, and the starting epoch
super(TrainingMonitor, self).__init__()
self.figPath = figPath
self.jsonPath = jsonPath
self.startAt = startAt
def on_train_begin(self, logs = {}):
# initialize the history dictionary
self.H = {}
# if the JSON history path exists, load the training history
if self.jsonPath is not None:
if os.path.exists(self.jsonPath):
self.H = json.loads(open(self.jsonPath).read())
# check to see if a starting epoch was supplied
if self.startAt > 0:
# loop over the entries in the history log and
# trim any entries that are past the starting epoch
for k in self.H.keys():
self.H[k] = self.H[k][:self.startAt]
def on_epoch_end(self, epoch, logs = {}):
# loop over the logs and update the loss, accuracy, etc
# for the entire training process
for (k, v) in logs.items():
l = self.H.get(k, [])
l.append(v)
self.H[k] = l
# check to see if the training history should be serialized to file
if self.jsonPath is not None:
f = open(self.jsonPath, "w")
f.write(json.dumps(self.H, cls = MyEncoder))
f.close()
# ensure at least two epochs have passed before plotting
# (epoch starts at 0)
if len(self.H["loss"]) > 1:
# plot the training loss and accuracy
N = np.arange(0, len(self.H["loss"]))
plt.style.use("ggplot")
plt.figure()
plt.plot(N, self.H["loss"], label = "train_loss")
plt.plot(N, self.H["val_loss"], label = "val_loss")
plt.plot(N, self.H["acc"], label = "train_acc")
plt.plot(N, self.H["val_acc"], label = "val_acc")
plt.title("Training Loss and Accuracy [Epoch {}]".format(len(self.H["loss"])))
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend()
# save the figure
plt.savefig(self.figPath)
plt.close()