-
Notifications
You must be signed in to change notification settings - Fork 0
/
References.txt
62 lines (62 loc) · 20.9 KB
/
References.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Reference Reference Link
Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A., & National Study Group for COVID-19 Vaccination (2021). Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. The New England journal of medicine, 385(2), 187–189. https://doi.org/10.1056/NEJMc2104974 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117967/
Andreano, E., Piccini, G., Licastro, D., Casalino, L., Johnson, N. V., Paciello, I., Monego, S. D., Pantano, E., Manganaro, N., Manenti, A., Manna, R., Casa, E., Hyseni, I., Benincasa, L., Montomoli, E., Amaro, R. E., McLellan, J. S., & Rappuoli, R. (n.d.). SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. https://doi.org/10.1101/2020.12.28.424451 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781313/
Barnes, C. O., Jette, C. A., Abernathy, M. E., Dam, K.-M. A., Esswein, S. R., Gristick, H. B., Malyutin, A. G., Sharaf, N. G., Huey-Tubman, K. E., Lee, Y. E., Robbiani, D. F., Nussenzweig, M. C., West, A. P., & Bjorkman, P. J. (2020). Structural classification of neutralizing antibodies against the SARS-CoV-2 spike receptor-binding domain suggests vaccine and therapeutic strategies. In Cold Spring Harbor Laboratory (p. 2020.08.30.273920). https://doi.org/10.1101/2020.08.30.27392 https://www.biorxiv.org/content/10.1101/2020.08.30.273920v1.full
Baum, A., Fulton, B. O., Wloga, E., Copin, R., Pascal, K. E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni, M., Wei, Y., Atwal, G. S., Murphy, A. J., Stahl, N., Yancopoulos, G. D., & Kyratsous, C. A. (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, 369(6506), 1014–1018. https://science.sciencemag.org/content/sci/369/6506/1014.full.pdf
Cele, S., Gazy, I., Jackson, L., Hwa, S.-H., Tegally, H., Lustig, G., Giandhari, J., Pillay, S., Wilkinson, E., Naidoo, Y., Karim, F., Ganga, Y., Khan, K., Balazs, A. B., Gosnell, B. I., Hanekom, W., Moosa, M.-Y. S., Lessells, R. J., de Oliveira, T., … COMMIT-KZN Team. (n.d.). Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma. https://doi.org/10.1101/2021.01.26.21250224 https://www.medrxiv.org/content/medrxiv/early/2021/01/26/2021.01.26.21250224.full.pdf
Chloe Rees-Spear, Luke Muir, Sarah A. Griffith, Judith Heaney, Yoann Aldon, Jonne L. Snitselaar, Peter Thomas, Carl Graham, Jeffrey Seow, Nayung Lee, Annachiara Rosa, Chloe Roustan, Catherine F. Houlihan, Rogier W. Sanders, Ravindra K. Gupta, Peter Cherepanov, Hans J. Stauss, Eleni Nastouli, Katie J. Doores, Marit J. van Gils, Laura E. McCoy, The effect of spike mutations on SARS-CoV-2 neutralization, Cell Reports, Volume 34, Issue 12, 2021, 108890, ISSN 2211-1247, https://doi.org/10.1016/j.celrep.2021.108890.. (https://www.sciencedirect.com/science/article/pii/S2211124721002047) https://www.sciencedirect.com/science/article/pii/S2211124721002047
Dejnirattisai, W., Zhou, D., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H., Tuekprakhon, A., Nutalai, R., Wang, B., López-Camacho, C., Slon-Campos, J., Walter, T. S., Skelly, D., Costa Clemens, S. A., Naveca, F. G., Nascimento, V., Nascimento, F., Fernandes da Costa, C., … Screaton, G. R. (2021). Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 184(11), 2939–2954.e9. https://doi.org/10.1016/j.cell.2021.03.055 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008340/
Du, S., Cao, Y., Zhu, Q., Yu, P., Qi, F., Wang, G., Du, X., Bao, L., Deng, W., Zhu, H., Liu, J., Nie, J., Zheng, Y., Liang, H., Liu, R., Gong, S., Xu, H., Yisimayi, A., Lv, Q., … Qin, C. (2020). Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell, 183(4), 1013–1023.e13. https://doi.org/10.1016/j.cell.2020.09.035
Greaney, A. J., Loes, A. N., Crawford, K. H. D., Starr, T. N., Malone, K. D., Chu, H. Y., & Bloom, J. D. (n.d.). Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies. https://doi.org/10.1101/2020.12.31.425021 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869748/
Greaney, A. J., Starr, T. N., Gilchuk, P., Zost, S. J., Binshtein, E., Loes, A. N., Hilton, S. K., Huddleston, J., Eguia, R., Crawford, K., Dingens, A. S., Nargi, R. S., Sutton, R. E., Suryadevara, N., Rothlauf, P. W., Liu, Z., Whelan, S., Carnahan, R. H., Crowe, J. E., & Bloom, J. D. (2020). Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. bioRxiv : the preprint server for biology, 2020.09.10.292078. https://doi.org/10.1101/2020.09.10.292078 https://www.sciencedirect.com/science/article/pii/S1931312820306247
Gupta, A. M., Chakrabarti, J., & Mandal, S. (2020). Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes and Infection, 1. https://doi.org/10.1016/j.micinf.2020.10.004 https://www.sciencedirect.com/science/article/pii/S1286457920301829
Hoffmann, M., Arora, P., Groß, R., Seidel, A., Hörnich, B. F., Hahn, A. S., Krüger, N., Graichen, L., Hofmann-Winkler, H., Kempf, A., Winkler, M. S., Schulz, S., Jäck, H. M., Jahrsdörfer, B., Schrezenmeier, H., Müller, M., Kleger, A., Münch, J., & Pöhlmann, S. (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 184(9), 2384–2393.e12. https://doi.org/10.1016/j.cell.2021.03.036 https://www.sciencedirect.com/science/article/pii/S0092867421003676?via%3Dihub
Ip, J. D., Kok, K. H., Chan, W. M., Chu, A. W., Wu, W. L., Yip, C. C., To, W. K., Tsang, O. T., Leung, W. S., Chik, T. S., Chan, K. H., Hung, I. F., Yuen, K. Y., & To, K. K. (2020). Intra-host non-synonymous diversity at a neutralizing antibody epitope of SARS-CoV-2 spike protein N-terminal domain. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, S1198-743X(20)30661-3. Advance online publication. https://doi.org/10.1016/j.cmi.2020.10.030 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605743/
Li, Qianqian, Jiajing Wu, Jianhui Nie, Li Zhang, Huan Hao, Shuo Liu, Chenyan Zhao, et al. 2020. “The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity.” Cell 182 (5): 1284–94.e9. https://www.sciencedirect.com/science/article/pii/S0092867420308771
Liu, Z., VanBlargan, L., Rothlauf, P., Bloyet, L., Chen, R., Stumpf, S., . . . Whelan, S. (2020, January 01). Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Retrieved November 25, 2020, from https://www.biorxiv.org/content/10.1101/2020.11.06.372037v1 https://www.biorxiv.org/content/10.1101/2020.11.06.372037v1.full
McCallum, M., Bassi, J., De Marco, A., Chen, A., Walls, A. C., Di Iulio, J., Alejandra Tortorici, M., Navarro, M.-J., Silacci-Fregni, C., Saliba, C., Agostini, M., Pinto, D., Culap, K., Bianchi, S., Jaconi, S., Cameroni, E., Bowen, J. E., Tilles, S. W., Pizzuto, M. S., … Veesler, D. (2021). SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. In bioRxiv (p. 2021.03.31.437925). https://doi.org/10.1101/2021.03.31.43792 https://www.biorxiv.org/content/10.1101/2021.03.31.437925v1.full
McCallum, M., Bassi, J., De Marco, A., Chen, A., Walls, A. C., Di Iulio, J., Alejandra Tortorici, M., Navarro, M.-J., Silacci-Fregni, C., Saliba, C., Agostini, M., Pinto, D., Culap, K., Bianchi, S., Jaconi, S., Cameroni, E., Bowen, J. E., Tilles, S. W., Pizzuto, M. S., … Veesler, D. (2021). SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. In bioRxiv (p. 2021.03.31.437925). https://doi.org/10.1101/2021.03.31.43792 https://www.biorxiv.org/content/10.1101/2021.05.04.442663v1.full
McCallum, M., De Marco, A., Lempp, F. A., Tortorici, M. A., Pinto, D., Walls, A. C., Beltramello, M., Chen, A., Liu, Z., Zatta, F., Zepeda, S., di Iulio, J., Bowen, J. E., Montiel-Ruiz, M., Zhou, J., Rosen, L. E., Bianchi, S., Guarino, B., Fregni, C. S., … Veesler, D. (2021). N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 184(9), 2332–2347.e16. https://www.biorxiv.org/content/10.1101/2021.01.14.426475v1.full
McCarthy, K. R., Rennick, L. J., Nambulli, S., Robinson-McCarthy, L. R., Bain, W. G., Haidar, G., & Paul Duprex, W. (2021). Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. In Cold Spring Harbor Laboratory (p. 2020.11.19.389916). https://doi.org/10.1101/2020.11.19.389916 https://science.sciencemag.org/content/371/6534/1139
Muecksch, F., Weisblum, Y., Barnes, C. O., Schmidt, F., Schaefer-Babajew, D., Wang, Z., C Lorenzi, J. C., Flyak, A. I., DeLaitsch, A. T., Huey-Tubman, K. E., Hou, S., Schiffer, C. A., Gaebler, C., Da Silva, J., Poston, D., Finkin, S., Cho, A., Cipolla, M., Oliveira, T. Y., … Bieniasz, P. D. (2021). Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity. https://doi.org/10.1016/j.immuni.2021.07.008 https://www.sciencedirect.com/science/article/pii/S1074761321002946#sec2
Reduced neutralization of SARS-CoV-2 variants by convalescent plasma and hyperimmune intravenous immunoglobulins for treatment of COVID-19 https://www.biorxiv.org/content/10.1101/2021.03.19.436183v1.full#T2
Shang, E., & Axelsen, P. (n.d.). The Potential for SARS-CoV-2 to Evade Both Natural and Vaccine-induced Immunity. https://doi.org/10.1101/2020.12.13.422567 https://www.biorxiv.org/content/10.1101/2020.12.13.422567v1
Shen, X., Tang, H., McDanal, C., Wagh, K., Fischer, W., Theiler, J., Yoon, H., Li, D., Haynes, B. F., Sanders, K. O., Gnanakaran, S., Hengartner, N., Pajon, R., Smith, G., Dubovsky, F., Glenn, G. M., Korber, B., & Montefiori, D. C. (2021). SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines. bioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2021.01.27.42851 https://www.biorxiv.org/content/biorxiv/early/2021/01/28/2021.01.27.428516.full.pdf
Singh, U. B., Rophina, M., Chaudhry, R., Senthivel, V., Bala, K., Bhoyar, R. C., … Guleria, R. (2021, June 3). Variants of Concern responsible for SARS-CoV-2 vaccine breakthrough infections from India. https://doi.org/10.31219/osf.io/fgd4x https://osf.io/fgd4x/
Starr, T. N., Greaney, A. J., Addetia, A., Hannon, W. H., Choudhary, M. C., Dingens, A. S., et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. doi:10.1101/2020.11.30.405472. https://science.sciencemag.org/content/371/6531/850
Starr, T. N., Greaney, A. J., Dingens, A. S., & Bloom, J. D. (n.d.). Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. https://doi.org/10.1101/2021.02.17.431683 https://www.sciencedirect.com/science/article/pii/S2666379121000719
Supasa, P., Zhou, D., Dejnirattisai, W., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H., Nutalai, R., Tuekprakhon, A., Wang, B., Paesen, G. C., Slon-Campos, J., López-Camacho, C., Hallis, B., Coombes, N., Bewley, K. R., Charlton, S., Walter, T. S., Barnes, E., … Screaton, G. R. (2021). Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 184(8), 2201–2211.e7. https://doi.org/10.1016/j.cell.2021.02.033 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891044/#mmc1
Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., Van Zyl, G., … de Oliveira, T. (2020). Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, 2020.12.21.20248640. https://www.medrxiv.org/content/10.1101/2020.12.21.20248640v1
Thomson, E. C., Rosen, L. E., Shepherd, J. G., Spreafico, R., da Silva Filipe, A., Wojcechowskyj, J. A., Davis, C., Piccoli, L., Pascall, D. J., Dillen, J., Lytras, S., Czudnochowski, N., Shah, R., Meury, M., Jesudason, N., De Marco, A., Li, K., Bassi, J., O’Toole, A., … COVID-19 Genomics UK (COG-UK) consortium. (n.d.). The circulating SARS-CoV-2 spike variant N439K maintains fitness while evading antibody-mediated immunity. https://doi.org/10.1101/2020.11.04.355842 https://www.sciencedirect.com/science/article/pii/S0092867421000805?via%3Dihub
Wang, G. L., Wang, Z. Y., Duan, L. J., Meng, Q. C., Jiang, M. D., Cao, J., Yao, L., Zhu, K. L., Cao, W. C., & Ma, M. J. (2021). Susceptibility of Circulating SARS-CoV-2 Variants to Neutralization. New England Journal of Medicine, 384(24), 2354–2356. https://doi.org/10.1056/nejmc2103022 https://www.nejm.org/doi/full/10.1056/NEJMc2103022
Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P. D., Graham, B. S., Mascola, J. R., Chang, J. Y., Yin, M. T., Sobieszczyk, M., Kyratsous, C. A., Shapiro, L., Sheng, Z., Huang, Y., & Ho, D. D. (2021). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 593(7857), 130–135. https://doi.org/10.1038/s41586-021-03398-10 https://www.nature.com/articles/s41586-021-03398-2
Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C. C., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillyer, C. D., Caskey, M., … Bieniasz, P. D. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 9, 1. https://doi.org/10.7554/elife.61312 https://elifesciences.org/articles/61312
Widera, M., Wilhelm, A., Hoehl, S., Pallas, C., Kohmer, N., Wolf, T., Rabenau, H. F., Corman, V. M., Drosten, C., Vehreschild, M., Goetsch, U., Gottschalk, R., & Ciesek, S. (2021). Limited neutralization of authentic SARS-CoV-2 variants carrying E484K in vitro. The Journal of infectious diseases, jiab355. Advance online publication. https://doi.org/10.1093/infdis/jiab355 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344430/
Xie, X., Liu, Y., Liu, J. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med 27, 620–621 (2021). https://doi.org/10.1038/s41591-021-01270-4 https://www.nature.com/articles/s41591-021-01270-4#Abs1
Yi, C., Sun, X., Lin, Y., Gu, C., Ding, L., Lu, X., Yang, Z., Zhang, Y., Ma, L., Gu, W., Qu, A., Zhou, X., Li, X., Xu, J., Ling, Z., Xie, Y., Lu, H., & Sun, B. (n.d.). Comprehensive Mapping of Binding Hot Spots of SARS-CoV-2 RBD-specific Neutralizing Antibodies for Tracking Immune Escape Variants. https://doi.org/10.21203/rs.3.rs-497595/v1 https://assets.researchsquare.com/files/rs-497595/v1/13d4a2ac-abab-42ed-85f2-3655a8eb0027.pdf
Yi, C., Sun, X., Ye, J., Ding, L., Liu, M., Yang, Z., Lu, X., Zhang, Y., Ma, L., Gu, W., Qu, A., Xu, J., Shi, Z., Ling, Z., & Sun, B. (2020). Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology, 17(6), 621–630. https://doi.org/10.1038/s41423-020-0458-z https://www.nature.com/articles/s41423-020-0458-z
Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M. E., Tuekprakhon, A., Nutalai, R., Wang, B., Paesen, G. C., Lopez-Camacho, C., Slon-Campos, J., Hallis, B., Coombes, N., Bewley, K., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 184(9), 2348–2361.e6 https://www.sciencedirect.com/science/article/pii/S0092867421002269
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3793486
Other references - For Background data
Dong21: Dong J, Zost SJ, et int., and Crowe JE. “Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail.” bioRxiv, 2021. doi.org/10.1101/2021.01.27.428529. [PubMed33532768] [PMC7852235] view abstract
Du20: Du S, Cao Y, et int., and Qin C. “Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy.” Cell, 2020. doi.org/10.1016/j.cell.2020.09.035. [PubMed32970990] [PMC7489885] view abstract
Edara21: Edara VV, Hudson WH, et int., and Suthar MS. “Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination.” JAMA, 2021. doi.org/10.1001/jama.2021.4388. [PubMed33739374] [PMC7980146] view abstract
Edara21b: Edara VV, Norwood C, et int., and Suthar MS. “Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant.” Cell Host & Microbe, 2021. doi.org/10.1016/j.chom.2021.03.009. [PubMed33798491] [PMC7980225] view abstract
Edara21c: Edara V, Pinsky BA, et int., and Fabrizio TP. “Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants.” New England Journal of Medicine, 2021. doi.org/10.1056/nejmc2107799. [PubMed34233096] view abstract
FDA21: . “FDA authorizes revisions to fact sheets to address SARS-CoV-2 variants for monoclonal antibody products under emergency use authorization.” , 2021. view abstract
Faulkner21: Faulkner N, Ng KW, et int., and Kassiotis G. “Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains.” bioRxiv, 2021. doi.org/10.1101/2021.03.01.433314. view abstract
Ferreira21: Ferreira I, Kemp S, et int., and Gupta RK. “OUP accepted manuscript.” The Journal of Infectious Diseases, 2021. doi.org/10.1093/infdis/jiab368. [PubMed34260717] view abstract
Goel21: Goel RR, Apostolidis SA, et int., and Wherry EJ. “Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination.” Science Immunology, 2021. doi.org/10.1126/sciimmunol.abi6950. [PubMed33858945] [PMC8158969] view abstract
Gottlieb21: Gottlieb RL, Nirula A, et int., and Skovronsky DM. “Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19.” JAMA, 2021. doi.org/10.1001/jama.2021.0202. [PubMed33475701] [PMC7821080] view
Rothenberger21: Rothenberger S, Walser M, et int., and Stumpp MT. “Multispecific DARPin® therapeutics demonstrate very high potency against SARS-CoV-2 variants in vitro.” bioRxiv, 2021. doi.org/10.1101/2021.02.03.429164. view abstract
Sadoff21: Sadoff J, Gray G, et int., and Douoguih M. “Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19.” New England Journal of Medicine, 2021. doi.org/10.1056/NEJMoa2101544. [PubMed33882225] [PMC8220996] view abstract
Sahin20: Sahin U, Muik A, et int., and Türeci Ö. “COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses.” Nature, 2020. doi.org/10.1038/s41586-020-2814-7. [PubMed32998157] view abstract
Sapkal21: Sapkal G, Yadav PD, et int., and Bhargava B. “Neutralization of VUI B.1.1.28 P2 variant with sera of COVID-19 recovered cases and recipients of Covaxin an inactivated COVID-19 vaccine.” Journal of Travel Medicine, 2021. doi.org/10.1093/jtm/taab077. [PubMed34002240] [PMC8194512] view abstract
Sapkal21b: Sapkal GN, Yadav PD, et int., and Bhargava B. “Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2.” Journal of Travel Medicine, 2021. doi.org/10.1093/jtm/taab051. [PubMed33772577] [PMC8083765] view abstract
Sheikh21: Sheikh A, McMenamin J, et int., and Robertson C. “SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness.” The Lancet, 2021. doi.org/10.1016/S0140-6736(21)01358-1. [PubMed34139198] [PMC8201647] view abstract
Shen21: Shen X, Tang H, et int., and Montefiori DC. “SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines.” Cell Host & Microbe, 2021. doi.org/10.1016/j.chom.2021.03.002. [PubMed33705729] [PMC7934674] view abstract
Shen21b: Shen X, Tang H, et int., and Montefiori DC. “Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351.” New England Journal of Medicine, 2021. doi.org/10.1056/NEJMc2103740. [PubMed33826819] [PMC8063884] view abstract
Becker21: Becker M, Dulovic A, et int., and Schneiderhan-Marra N. “Immune response to SARS-CoV-2 variants of concern in vaccinated individuals.” Nature Communications, 2021. doi.org/10.1038/s41467-021-23473-6. [PubMed34035301] [PMC8149389] view abstract
Bernal21: . “.” , . doi.org/10.1101/2021.05.22.21257658v1. view abstract
Betton21: Betton M, Livrozet M, et int., and Hulot J. “Sera neutralizing activities against SARS-CoV-2 and multiple variants six month after hospitalization for COVID-19.” Clinical Infectious Diseases, 2021. doi.org/10.1093/cid/ciab308. [PubMed33851216] [PMC8083257] view abstract
Brown21: Brown JC, Goldhill DH, et int., and Barclay WS. “Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape.” bioRxiv, 2021. doi.org/10.1101/2021.02.24.432576. view abstract