-
Notifications
You must be signed in to change notification settings - Fork 0
/
References.txt
253 lines (253 loc) · 42.5 KB
/
References.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7366990/ The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
https://europepmc.org/article/ppr/ppr197275 Prediction of Single Point Mutations in Ganglioside-Binding Domain of SARS-CoV-2 S and Their Effects on Binding of 9-O-Acetylated Sialic Acid and Hidroxychloroquine
https://linkinghub.elsevier.com/retrieve/pii/S0092867420308205 Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
https://msystems.asm.org/content/5/3/e00266-20 SARS-CoV-2 and ORF3a: Non-Synonymous Mutations and Polyproline Regions
https://msystems.asm.org/content/5/3/e00266-20 SARS-CoV-2 and ORF3a: Non-Synonymous Mutations and Polyproline Regions
https://onlinelibrary.wiley.com/doi/10.1002/jmv.26597 Effects of SARS-CoV-2 Mutations on Protein Structures and Intraviral Protein-Protein Interactions
https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.26417 Mutational spectra of SARS‐CoV‐2 orf1ab polyprotein and signature mutations in the United States of America
https://pubmed.ncbi.nlm.nih.gov/32321524/ Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant
https://pubmed.ncbi.nlm.nih.gov/32371472/ SARS-CoV-2 and ORF3a: Nonsynonymous Mutations, Functional Domains, and Viral Pathogenesis
https://pubmed.ncbi.nlm.nih.gov/32374903/ SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate
https://pubmed.ncbi.nlm.nih.gov/32378705/ A virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity##Identification of twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32511374/ An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations
https://pubmed.ncbi.nlm.nih.gov/32577643/ A Rare Deletion in SARS-CoV-2 ORF6 Dramatically Alters the Predicted Three-Dimensional Structure of the Resultant Protein
https://pubmed.ncbi.nlm.nih.gov/32615316/ Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design##Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design#Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants##Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32635180/ , https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://pubmed.ncbi.nlm.nih.gov/32635180/##https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://pubmed.ncbi.nlm.nih.gov/32635180/#http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7366990/#https://pubmed.ncbi.nlm.nih.gov/33112236/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design#The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity#Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/32635180/#https://pubmed.ncbi.nlm.nih.gov/33112236/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design#Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/32645951/ Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting
https://pubmed.ncbi.nlm.nih.gov/32710986/ Mutations Strengthened SARS-CoV-2 Infectivity
https://pubmed.ncbi.nlm.nih.gov/32822564/ Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study
https://pubmed.ncbi.nlm.nih.gov/32851910/ Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32881907/ Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight
https://pubmed.ncbi.nlm.nih.gov/32881907/ Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32941788/ SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant
https://pubmed.ncbi.nlm.nih.gov/33015411/ Identification of twenty-five mutations in Surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics
https://pubmed.ncbi.nlm.nih.gov/33112236/ Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/33140034/ Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein
https://pubmed.ncbi.nlm.nih.gov/33181329/ Analysis of the potential impact of genomic variants in global SARS-CoV-2 genomes on molecular diagnostic assays
https://pubmed.ncbi.nlm.nih.gov/33200028/ Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization
https://pubmed.ncbi.nlm.nih.gov/33253058/ A Gapless, Unambiguous RNA Metagenome-Assembled Genome Sequence of a Unique SARS-CoV-2 Variant Encoding Spike S813I and ORF1a A859V Substitutions
https://pubmed.ncbi.nlm.nih.gov/33275900/ Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
https://pubmed.ncbi.nlm.nih.gov/33329480/ SARS-CoV2 genome analysis of Indian isolates and molecular modelling of D614G mutated spike protein with TMPRSS2 depicted its enhanced interaction and virus infectivity
https://pubmed.ncbi.nlm.nih.gov/33494095/ Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis
https://pubmed.ncbi.nlm.nih.gov/33536258/ Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape.
https://pubmed.ncbi.nlm.nih.gov/33548198/ Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response
https://pubmed.ncbi.nlm.nih.gov/33558724/ Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera.
https://pubmed.ncbi.nlm.nih.gov/33655251/ SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity
https://pubmed.ncbi.nlm.nih.gov/33658326/ Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England
https://pubmed.ncbi.nlm.nih.gov/33727331/ Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays
https://pubmed.ncbi.nlm.nih.gov/33852911/ Antibody evasion by the P.1 strain of SARS-CoV-2
https://pubmed.ncbi.nlm.nih.gov/33852911/##https://pubmed.ncbi.nlm.nih.gov/33853970/##https://pubmed.ncbi.nlm.nih.gov/33887205/##https://pubmed.ncbi.nlm.nih.gov/33909850/##https://pubmed.ncbi.nlm.nih.gov/33989776/ Antibody evasion by the P.1 strain of SARS-CoV-2##Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil##Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization##SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil##Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil
https://pubmed.ncbi.nlm.nih.gov/33853970/ Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil
https://pubmed.ncbi.nlm.nih.gov/33880483/ High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.5.2.5 lineage in Oyo State, Nigeria
https://pubmed.ncbi.nlm.nih.gov/33887205/ Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization
https://pubmed.ncbi.nlm.nih.gov/33895775/ Adapt or perish: SARS-CoV-2 antibody escape variants defined by deletions in the Spike N-terminal Domain
https://pubmed.ncbi.nlm.nih.gov/33896413/ Emerging variants of concern in SARS-CoV-2 membrane protein: a highly conserved target with potential pathological and therapeutic implications
https://pubmed.ncbi.nlm.nih.gov/33909850/ SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil
https://pubmed.ncbi.nlm.nih.gov/33909850/#:~:text=1%20lineage%20was%20first%20identified,need%20for%20a%20global%20vigilance. SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil
https://pubmed.ncbi.nlm.nih.gov/33936746/ Extensive genetic diversity with novel mutations in spike glycoprotein of SARS-CoV-2, Bangladesh in late 2020
https://pubmed.ncbi.nlm.nih.gov/33961693/ Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees
https://pubmed.ncbi.nlm.nih.gov/33989776/ Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil
https://pubmed.ncbi.nlm.nih.gov/33990970/ Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case Report
https://pubmed.ncbi.nlm.nih.gov/34018481/ The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00990 SARS-CoV-2 Variants Are Selecting for Spike Protein Mutations That Increase Protein Stability
https://reader.elsevier.com/reader/sd/pii/S1567134820302768?token=338AC50A40D839C11FE8EC0F73EE52B342F47E580D74A3997A06DB442157203A1C3059D3F88EB1104BFAB967FB300D2C Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
https://www.biorxiv.org/content/10.1101/2020.03.15.991844v5.full Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity
https://www.biorxiv.org/content/10.1101/2020.06.08.107011v2.full SARS-CoV-2 ORF8 can fold into human factor 1 catalytic domain binding site on complement C3b: Predict functional mimicry
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full D936Y and Other Mutations in the Fusion Core of the SARS-Cov-2 Spike Protein Heptad Repeat 1 Undermine the Post-Fusion Assembly
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full D936Y and Other Mutations in the Fusion Core of the SARS-Cov-2 Spike Protein Heptad Repeat 1 Undermine the Post-Fusion Assembly
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full D936Y and Other Mutations in the Fusion Core of the SARS-Cov-2 Spike Protein Heptad Repeat 1 Undermine the Post-Fusion Assembly
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full Structural Genetics of circulating variants affecting the SARS-CoV-2 Spike / human ACE2 complex
https://www.biorxiv.org/content/10.1101/2020.06.09.134460v1.full.pdf+html A Rare Deletion in SARS-CoV-2 ORF6 Dramatically Alters the Predicted Three-Dimensional Structure of the Resultant Protein
https://www.biorxiv.org/content/10.1101/2020.06.15.150482v1.full SARS-CoV-2 mutations altering regulatory properties: deciphering host’s and virus’s perspectives
https://www.biorxiv.org/content/10.1101/2020.08.04.236653v1.full Pathogenetic Perspective of Missense Mutations of ORF3a Protein of SARS-CoV2
https://www.biorxiv.org/content/10.1101/2020.08.12.248732v1.full Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load
https://www.biorxiv.org/content/10.1101/2020.12.24.424245v1.full.pdf Single point mutations can potentially enhance infectivity of SARS-CoV-2 revealed by in silico affinity maturation and SPR assay
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.20.2100428 The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant
https://www.karger.com/Article/FullText/515417 Evolution of SARS-CoV-2: Review of Mutations, Role of the Host Immune System
https://www.nature.com/articles/s41423-020-0458-z Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
https://www.nature.com/articles/s41598-021-83105-3 Genomic Mutations and Changes in Protein Secondary Structure and Solvent Accessibility of SARS-CoV-2 (COVID-19 Virus)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247990/ Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality?
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269891/ Mutations in SARS-CoV-2 viral RNA identified in Eastern India: Possible implications for the ongoing outbreak in India and impact on viral structure and host susceptibility
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291963/ Molecular conservation and differential mutation on ORF3a gene in Indian SARS-CoV2 genomes
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299283/ Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310631/#:~:text=The%20S1%3AS2%20ratio%20is,protein%20incorporated%20into%20the%20virion. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335631/ SARS-CoV2 envelope protein: non-synonymous mutations and its consequences
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335631// SARS-CoV2 envelope protein: non-synonymous mutations and its consequences
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337032/ Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368421/ Mortality in COVID-19 disease patients: Correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ , https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379507/ Natural Polymorphisms Are Present in the Furin Cleavage Site of the SARS-CoV-2 Spike Glycoprotein
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380272/ RdRp mutations are associated with SARS-CoV-2 genome evolution
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430589/ Characterizing SARS-CoV-2 mutations in the United States
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434477/ Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462717/ Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike Protein: A Challenge in Vaccine Development
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467077/ Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513834/ Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538173/ Identication of novel mutations in SARS-COV-2 isolates from Turkey
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584268/ Mutations Observed in the SARS-CoV-2 Spike Glycoprotein and Their Effects in the Interaction of Virus with ACE-2 Receptor
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598948/ A SARS-CoV-2 variant with the 12-bp deletion at E gene
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723457/ Mutational insights into the envelope protein of SARS-CoV-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846228/#mmc9 Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911659/ Effect of An 84-bp Deletion of the Receptor-Binding Domain on the ACE2 Binding Affinity of the SARS-CoV-2 Spike Protein: An In Silico Analysis
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010360/ Molecular epidemiology analysis of early variants of SARS-CoV-2 reveals the potential impact of mutations P504L and Y541C (NSP13) in the clinical COVID-19 outcomes
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017899/ Novel Mutations in NSP1 and PLPro of SARS-CoV-2 NIB-1 Genome Mount for Effective Therapeutics
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043463/ Deletion of ER-retention Motif on SARS-CoV-2 Spike Protein Reduces Cell Hybrid During Cell-cell Fusion
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050975/ Genome Sequences of Three SARS-CoV-2 ORF7a Deletion Variants Obtained from Patients in Hong Kong
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057251.1/ High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.5.2.5 lineage in Oyo State, Nigeria
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8077628/ Insertions in SARS-CoV-2 genome caused by template switch and duplications give rise to new variants of potential concern
https://www.ncbi.nlm.nih.gov/research/coronavirus/publication/32492183 Evidence for mutations in SARS-CoV-2 Italian isolates potentially affecting virus transmission.
https://www.sciencedirect.com/science/article/abs/pii/S0141813020353137 SARS-Cov-2 ORF3a: Mutability and function
https://www.sciencedirect.com/science/article/abs/pii/S1567134820302768 Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
https://www.sciencedirect.com/science/article/abs/pii/S1931312821001839 Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization
https://www.sciencedirect.com/science/article/pii/S0092867420308205 Trackinghttp://www.ncbi.nlm.nih.gov/pmc/articles/pmc7366990/ The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
https://europepmc.org/article/ppr/ppr197275 Prediction of Single Point Mutations in Ganglioside-Binding Domain of SARS-CoV-2 S and Their Effects on Binding of 9-O-Acetylated Sialic Acid and Hidroxychloroquine
https://linkinghub.elsevier.com/retrieve/pii/S0092867420308205 Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
https://msystems.asm.org/content/5/3/e00266-20 SARS-CoV-2 and ORF3a: Non-Synonymous Mutations and Polyproline Regions
https://msystems.asm.org/content/5/3/e00266-20 SARS-CoV-2 and ORF3a: Non-Synonymous Mutations and Polyproline Regions
https://onlinelibrary.wiley.com/doi/10.1002/jmv.26597 Effects of SARS-CoV-2 Mutations on Protein Structures and Intraviral Protein-Protein Interactions
https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.26417 Mutational spectra of SARS‐CoV‐2 orf1ab polyprotein and signature mutations in the United States of America
https://pubmed.ncbi.nlm.nih.gov/32321524/ Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant
https://pubmed.ncbi.nlm.nih.gov/32371472/ SARS-CoV-2 and ORF3a: Nonsynonymous Mutations, Functional Domains, and Viral Pathogenesis
https://pubmed.ncbi.nlm.nih.gov/32374903/ SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate
https://pubmed.ncbi.nlm.nih.gov/32378705/ A virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity##Identification of twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32511374/ An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations
https://pubmed.ncbi.nlm.nih.gov/32577643/ A Rare Deletion in SARS-CoV-2 ORF6 Dramatically Alters the Predicted Three-Dimensional Structure of the Resultant Protein
https://pubmed.ncbi.nlm.nih.gov/32615316/ Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design##Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design#Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants##Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32635180/ , https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://pubmed.ncbi.nlm.nih.gov/32635180/##https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://pubmed.ncbi.nlm.nih.gov/32635180/#http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7366990/#https://pubmed.ncbi.nlm.nih.gov/33112236/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design#The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity#Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/32635180/#https://pubmed.ncbi.nlm.nih.gov/33112236/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design#Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/32645951/ Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting
https://pubmed.ncbi.nlm.nih.gov/32710986/ Mutations Strengthened SARS-CoV-2 Infectivity
https://pubmed.ncbi.nlm.nih.gov/32822564/ Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study
https://pubmed.ncbi.nlm.nih.gov/32851910/ Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32881907/ Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight
https://pubmed.ncbi.nlm.nih.gov/32881907/ Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://pubmed.ncbi.nlm.nih.gov/32941788/ SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant
https://pubmed.ncbi.nlm.nih.gov/33015411/ Identification of twenty-five mutations in Surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics
https://pubmed.ncbi.nlm.nih.gov/33112236/ Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
https://pubmed.ncbi.nlm.nih.gov/33140034/ Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein
https://pubmed.ncbi.nlm.nih.gov/33181329/ Analysis of the potential impact of genomic variants in global SARS-CoV-2 genomes on molecular diagnostic assays
https://pubmed.ncbi.nlm.nih.gov/33200028/ Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization
https://pubmed.ncbi.nlm.nih.gov/33253058/ A Gapless, Unambiguous RNA Metagenome-Assembled Genome Sequence of a Unique SARS-CoV-2 Variant Encoding Spike S813I and ORF1a A859V Substitutions
https://pubmed.ncbi.nlm.nih.gov/33275900/ Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
https://pubmed.ncbi.nlm.nih.gov/33329480/ SARS-CoV2 genome analysis of Indian isolates and molecular modelling of D614G mutated spike protein with TMPRSS2 depicted its enhanced interaction and virus infectivity
https://pubmed.ncbi.nlm.nih.gov/33494095/ Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis
https://pubmed.ncbi.nlm.nih.gov/33536258/ Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape.
https://pubmed.ncbi.nlm.nih.gov/33548198/ Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response
https://pubmed.ncbi.nlm.nih.gov/33558724/ Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera.
https://pubmed.ncbi.nlm.nih.gov/33655251/ SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity
https://pubmed.ncbi.nlm.nih.gov/33658326/ Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England
https://pubmed.ncbi.nlm.nih.gov/33727331/ Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays
https://pubmed.ncbi.nlm.nih.gov/33852911/ Antibody evasion by the P.1 strain of SARS-CoV-2
https://pubmed.ncbi.nlm.nih.gov/33852911/##https://pubmed.ncbi.nlm.nih.gov/33853970/##https://pubmed.ncbi.nlm.nih.gov/33887205/##https://pubmed.ncbi.nlm.nih.gov/33909850/##https://pubmed.ncbi.nlm.nih.gov/33989776/ Antibody evasion by the P.1 strain of SARS-CoV-2##Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil##Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization##SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil##Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil
https://pubmed.ncbi.nlm.nih.gov/33853970/ Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil
https://pubmed.ncbi.nlm.nih.gov/33880483/ High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.5.2.5 lineage in Oyo State, Nigeria
https://pubmed.ncbi.nlm.nih.gov/33887205/ Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization
https://pubmed.ncbi.nlm.nih.gov/33895775/ Adapt or perish: SARS-CoV-2 antibody escape variants defined by deletions in the Spike N-terminal Domain
https://pubmed.ncbi.nlm.nih.gov/33896413/ Emerging variants of concern in SARS-CoV-2 membrane protein: a highly conserved target with potential pathological and therapeutic implications
https://pubmed.ncbi.nlm.nih.gov/33909850/ SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil
https://pubmed.ncbi.nlm.nih.gov/33909850/#:~:text=1%20lineage%20was%20first%20identified,need%20for%20a%20global%20vigilance. SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil
https://pubmed.ncbi.nlm.nih.gov/33936746/ Extensive genetic diversity with novel mutations in spike glycoprotein of SARS-CoV-2, Bangladesh in late 2020
https://pubmed.ncbi.nlm.nih.gov/33961693/ Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees
https://pubmed.ncbi.nlm.nih.gov/33989776/ Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil
https://pubmed.ncbi.nlm.nih.gov/33990970/ Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case Report
https://pubmed.ncbi.nlm.nih.gov/34018481/ The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00990 SARS-CoV-2 Variants Are Selecting for Spike Protein Mutations That Increase Protein Stability
https://reader.elsevier.com/reader/sd/pii/S1567134820302768?token=338AC50A40D839C11FE8EC0F73EE52B342F47E580D74A3997A06DB442157203A1C3059D3F88EB1104BFAB967FB300D2C Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
https://www.biorxiv.org/content/10.1101/2020.03.15.991844v5.full Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity
https://www.biorxiv.org/content/10.1101/2020.06.08.107011v2.full SARS-CoV-2 ORF8 can fold into human factor 1 catalytic domain binding site on complement C3b: Predict functional mimicry
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full D936Y and Other Mutations in the Fusion Core of the SARS-Cov-2 Spike Protein Heptad Repeat 1 Undermine the Post-Fusion Assembly
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full D936Y and Other Mutations in the Fusion Core of the SARS-Cov-2 Spike Protein Heptad Repeat 1 Undermine the Post-Fusion Assembly
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full D936Y and Other Mutations in the Fusion Core of the SARS-Cov-2 Spike Protein Heptad Repeat 1 Undermine the Post-Fusion Assembly
https://www.biorxiv.org/content/10.1101/2020.06.08.140152v1.full Structural Genetics of circulating variants affecting the SARS-CoV-2 Spike / human ACE2 complex
https://www.biorxiv.org/content/10.1101/2020.06.09.134460v1.full.pdf+html A Rare Deletion in SARS-CoV-2 ORF6 Dramatically Alters the Predicted Three-Dimensional Structure of the Resultant Protein
https://www.biorxiv.org/content/10.1101/2020.06.15.150482v1.full SARS-CoV-2 mutations altering regulatory properties: deciphering host’s and virus’s perspectives
https://www.biorxiv.org/content/10.1101/2020.08.04.236653v1.full Pathogenetic Perspective of Missense Mutations of ORF3a Protein of SARS-CoV2
https://www.biorxiv.org/content/10.1101/2020.08.12.248732v1.full Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load
https://www.biorxiv.org/content/10.1101/2020.12.24.424245v1.full.pdf Single point mutations can potentially enhance infectivity of SARS-CoV-2 revealed by in silico affinity maturation and SPR assay
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2021.26.20.2100428 The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant
https://www.karger.com/Article/FullText/515417 Evolution of SARS-CoV-2: Review of Mutations, Role of the Host Immune System
https://www.nature.com/articles/s41423-020-0458-z Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
https://www.nature.com/articles/s41598-021-83105-3 Genomic Mutations and Changes in Protein Secondary Structure and Solvent Accessibility of SARS-CoV-2 (COVID-19 Virus)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247990/ Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality?
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269891/ Mutations in SARS-CoV-2 viral RNA identified in Eastern India: Possible implications for the ongoing outbreak in India and impact on viral structure and host susceptibility
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291963/ Molecular conservation and differential mutation on ORF3a gene in Indian SARS-CoV2 genomes
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299283/ Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310631/#:~:text=The%20S1%3AS2%20ratio%20is,protein%20incorporated%20into%20the%20virion. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335631/ SARS-CoV2 envelope protein: non-synonymous mutations and its consequences
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335631// SARS-CoV2 envelope protein: non-synonymous mutations and its consequences
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337032/ Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368421/ Mortality in COVID-19 disease patients: Correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ Mutations Strengthened SARS-CoV-2 Infectivity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375973/ , https://pubmed.ncbi.nlm.nih.gov/32635180/ Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379507/ Natural Polymorphisms Are Present in the Furin Cleavage Site of the SARS-CoV-2 Spike Glycoprotein
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380272/ RdRp mutations are associated with SARS-CoV-2 genome evolution
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430589/ Characterizing SARS-CoV-2 mutations in the United States
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434477/ Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462717/ Mutations in SARS-CoV-2 Leading to Antigenic Variations in Spike Protein: A Challenge in Vaccine Development
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467077/ Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513834/ Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538173/ Identication of novel mutations in SARS-COV-2 isolates from Turkey
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584268/ Mutations Observed in the SARS-CoV-2 Spike Glycoprotein and Their Effects in the Interaction of Virus with ACE-2 Receptor
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598948/ A SARS-CoV-2 variant with the 12-bp deletion at E gene
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723457/ Mutational insights into the envelope protein of SARS-CoV-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846228/#mmc9 Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911659/ Effect of An 84-bp Deletion of the Receptor-Binding Domain on the ACE2 Binding Affinity of the SARS-CoV-2 Spike Protein: An In Silico Analysis
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010360/ Molecular epidemiology analysis of early variants of SARS-CoV-2 reveals the potential impact of mutations P504L and Y541C (NSP13) in the clinical COVID-19 outcomes
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017899/ Novel Mutations in NSP1 and PLPro of SARS-CoV-2 NIB-1 Genome Mount for Effective Therapeutics
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043463/ Deletion of ER-retention Motif on SARS-CoV-2 Spike Protein Reduces Cell Hybrid During Cell-cell Fusion
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050975/ Genome Sequences of Three SARS-CoV-2 ORF7a Deletion Variants Obtained from Patients in Hong Kong
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057251.1/ High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.5.2.5 lineage in Oyo State, Nigeria
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8077628/ Insertions in SARS-CoV-2 genome caused by template switch and duplications give rise to new variants of potential concern
https://www.ncbi.nlm.nih.gov/research/coronavirus/publication/32492183 Evidence for mutations in SARS-CoV-2 Italian isolates potentially affecting virus transmission.
https://www.sciencedirect.com/science/article/abs/pii/S0141813020353137 SARS-Cov-2 ORF3a: Mutability and function
https://www.sciencedirect.com/science/article/abs/pii/S1567134820302768 Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
https://www.sciencedirect.com/science/article/abs/pii/S1931312821001839 Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization
https://www.sciencedirect.com/science/article/pii/S0092867420308205 Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
https://www.sciencedirect.com/science/article/pii/S0092867420308205?via%3Dihub Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://www.sciencedirect.com/science/article/pii/S0092867421000805?via%3Dihub Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
https://www.sciencedirect.com/science/article/pii/S0092867421004281 Antibody evasion by the P.1 strain of SARS-CoV-2
https://www.sciencedirect.com/science/article/pii/S0924857920305008 Different mutations in SARS-CoV-2 associate with severe and mild outcome
https://www.sciencedirect.com/science/article/pii/S1201971221004112 Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil
https://www.sciencedirect.com/science/article/pii/S1286457920301829?via%3Dihub Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants
https://www.sciencedirect.com/science/article/pii/S1473309921002620?via%3Dihub SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity
https://www.sciencedirect.com/science/article/pii/S1473309921002620?via%3Dihub SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity.
https://www.sciencedirect.com/science/article/pii/S1476927120314870?via%3Dihub Genetic analysis of SARS-CoV-2 isolates collected from Bangladesh: insights into the origin, mutation spectrum, and possible pathomechanism
https://www.tandfonline.com/doi/full/10.1080/07391102.2020.1823885 Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: implications for virus entry mechanisms
https://www.tandfonline.com/doi/full/10.1080/07391102.2021.1886175 Structural Genetics of circulating variants affecting the SARS-CoV-2 Spike / human ACE2 complex Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
https://www.sciencedirect.com/science/article/pii/S0092867420308205?via%3Dihub Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
https://www.sciencedirect.com/science/article/pii/S0092867420310035?dgcid=rss_sd_all Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding##Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding
https://www.sciencedirect.com/science/article/pii/S0092867421000805?via%3Dihub Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
https://www.sciencedirect.com/science/article/pii/S0092867421004281 Antibody evasion by the P.1 strain of SARS-CoV-2
https://www.sciencedirect.com/science/article/pii/S0924857920305008 Different mutations in SARS-CoV-2 associate with severe and mild outcome
https://www.sciencedirect.com/science/article/pii/S1201971221004112 Early detection of P.1 variant of SARS-CoV-2 in a cluster of cases in Salvador, Brazil
https://www.sciencedirect.com/science/article/pii/S1286457920301829?via%3Dihub Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants
https://www.sciencedirect.com/science/article/pii/S1473309921002620?via%3Dihub SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity
https://www.sciencedirect.com/science/article/pii/S1473309921002620?via%3Dihub SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity.
https://www.sciencedirect.com/science/article/pii/S1476927120314870?via%3Dihub Genetic analysis of SARS-CoV-2 isolates collected from Bangladesh: insights into the origin, mutation spectrum, and possible pathomechanism
https://www.tandfonline.com/doi/full/10.1080/07391102.2020.1823885 Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: implications for virus entry mechanisms
https://www.tandfonline.com/doi/full/10.1080/07391102.2021.1886175 Structural Genetics of circulating variants affecting the SARS-CoV-2 Spike / human ACE2 complex