-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathconfusionplot.py
76 lines (62 loc) · 2.21 KB
/
confusionplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import itertools
import numpy as np
import pickle
import argparse
import matplotlib
import os
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes, cmap,
normalize=False,
title='Confusion matrix'):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
fig.colorbar(im)
ax.set_title(title)
tick_marks = np.arange(len(classes))
for axis in [ax.xaxis, ax.yaxis]:
axis.set_ticks(tick_marks+0.5, minor=True)
axis.set(ticks=tick_marks, ticklabels=classes)
labels = ax.get_xticklabels()
for label in labels:
label.set_rotation(45)
#plt.tight_layout()
ax.set_ylabel('True label')
ax.set_xlabel('Predicted label')
ax.grid(True, which='minor')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Plot RN confusion matrix')
parser.add_argument('file', type=str, help='Stat file to use for plotting')
parser.add_argument('--no-show', action='store_true', help='Do not show plot, store only on file')
args = parser.parse_args()
img_dir = 'imgs/'
args.img_dir = img_dir
if not os.path.exists(img_dir):
os.makedirs(img_dir)
if args.no_show:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# Load stats file
filename = open(args.file, 'rb')
p = pickle.load(filename)
target = p['confusion_matrix_target']
pred = p['confusion_matrix_pred']
class_names = p['confusion_matrix_labels']
# Compute confusion matrix
cnf_matrix = confusion_matrix(target, pred)
np.set_printoptions(precision=2)
# Plot normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=class_names, cmap=plt.cm.Blues, normalize=True,
title='Normalized confusion matrix')
plt.savefig(os.path.join(args.img_dir, 'confusion.png'))
if not args.no_show:
plt.show()