-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmodels.py
300 lines (292 loc) · 14.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
class SelfAttentionNaive(nn.Module):
def __init__(self, nf, nh=False):
super(SelfAttentionNaive, self).__init__()
if not nh:
nh = max(nf//8, 1)
self.f = spectral_norm(nn.Conv2d(nf, nh, 1, bias=False))
self.g = spectral_norm(nn.Conv2d(nf, nh, 1, bias=False))
self.h = spectral_norm(nn.Conv2d(nf, nf, 1, bias=False))
self.gamma = nn.Parameter(torch.zeros(1))
self.nh = nh
self.nf = nf
def forward(self, x):
fx = self.f(x).view(x.size(0), self.nh, x.size(2)*x.size(3))
gx = self.g(x).view(x.size(0), self.nh, x.size(2)*x.size(3))
hx = self.h(x).view(x.size(0), self.nf, x.size(2)*x.size(3))
s = fx.transpose(-1,-2).matmul(gx)
b = F.softmax(s, dim=1)
o = hx.matmul(b)
return o.view_as(x) * self.gamma + x
class SelfAttention(nn.Module):
def __init__(self, nf, nh=False):
super(SelfAttention, self).__init__()
if not nh:
nh = max(nf//8, 1)
self.f = spectral_norm(nn.Conv2d(nf, nh, 1, bias=False))
self.g = spectral_norm(nn.Conv2d(nf, nh, 1, bias=False))
self.h = spectral_norm(nn.Conv2d(nf, nf//2, 1, bias=False))
self.o = spectral_norm(nn.Conv2d(nf//2, nf, 1, bias=False))
self.gamma = nn.Parameter(torch.zeros(1))
self.nh = nh
self.nf = nf
def forward(self, x):
fx = self.f(x).view(x.size(0), self.nh, x.size(2)*x.size(3))
gx = self.g(x)
gx = F.max_pool2d(gx, kernel_size=2)
gx = gx.view(x.size(0), self.nh, x.size(2)*x.size(3)//4)
s = gx.transpose(-1,-2).matmul(fx)
s = F.softmax(s, dim=1)
hx = self.h(x)
hx = F.max_pool2d(hx, kernel_size=2)
hx = hx.view(x.size(0), self.nf//2, x.size(2)*x.size(3)//4)
ox = hx.matmul(s).view(x.size(0), self.nf//2, x.size(2), x.size(3))
ox = self.o(ox)
return ox * self.gamma + x
class _resDiscriminator128(nn.Module):
def __init__(self, nIn=3, nf=64, selfAtt=False):
super(_resDiscriminator128, self).__init__()
self.blocs = []
self.sc = []
# first bloc
self.bloc0 = nn.Sequential(spectral_norm(nn.Conv2d(nIn, nf, 3, 1, 1, bias=True)),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)),
nn.AvgPool2d(2),)
self.sc0 = nn.Sequential(nn.AvgPool2d(2),
spectral_norm(nn.Conv2d(nIn, nf, 1, bias=True)),)
if selfAtt:
self.selfAtt = SelfAttention(nf)
else:
self.selfAtt = nn.Sequential()
# Down blocs
for i in range(4):
nfPrev = nf
nf = nf*2
self.blocs.append(nn.Sequential(nn.ReLU(),
spectral_norm(nn.Conv2d(nfPrev, nf, 3, 1, 1, bias=True)),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)),
nn.AvgPool2d(2),))
self.sc.append(nn.Sequential(nn.AvgPool2d(2),
spectral_norm(nn.Conv2d(nfPrev, nf, 1, bias=True)),))
# Last Bloc
self.blocs.append(nn.Sequential(nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))))
self.sc.append(nn.Sequential())
self.dense = nn.Linear(nf, 1)
self.blocs = nn.ModuleList(self.blocs)
self.sc = nn.ModuleList(self.sc)
def forward(self, x):
x = self.selfAtt(self.bloc0(x) + self.sc0(x))
for k in range(len(self.blocs)):
x = self.blocs[k](x) + self.sc[k](x)
x = x.sum(3).sum(2)
return self.dense(x)
class _resEncoder128(nn.Module):
def __init__(self, nIn=3, nf=64, nOut=8):
super(_resEncoder128, self).__init__()
self.blocs = []
self.sc = []
# first bloc
self.blocs.append(nn.Sequential(spectral_norm(nn.Conv2d(nIn, nf, 3, 1, 1, bias=True)),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)),
nn.AvgPool2d(2),))
self.sc.append(nn.Sequential(nn.AvgPool2d(2),
spectral_norm(nn.Conv2d(nIn, nf, 1, bias=True)),))
# Down blocs
for i in range(4):
nfPrev = nf
nf = nf*2
self.blocs.append(nn.Sequential(nn.ReLU(),
spectral_norm(nn.Conv2d(nfPrev, nf, 3, 1, 1, bias=True)),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)),
nn.AvgPool2d(2),))
self.sc.append(nn.Sequential(nn.AvgPool2d(2),
spectral_norm(nn.Conv2d(nfPrev, nf, 1, bias=True)),))
# Last Bloc
self.blocs.append(nn.Sequential(nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))))
self.sc.append(nn.Sequential())
self.dense = nn.Linear(nf, nOut)
self.blocs = nn.ModuleList(self.blocs)
self.sc = nn.ModuleList(self.sc)
def forward(self, x):
for k in range(len(self.blocs)):
x = self.blocs[k](x) + self.sc[k](x)
x = x.sum(3).sum(2)
return self.dense(x)
class _resMaskedGenerator128(nn.Module):
def __init__(self, nf=64, nOut=3, nc=8, selfAtt=False):
super(_resMaskedGenerator128, self).__init__()
if selfAtt:
self.selfAtt = SelfAttention(nf*2)
else:
self.selfAtt = nn.Sequential()
self.dense = nn.Linear(nc, 4*4*nf*16)
self.convA = []
self.convB = []
self.normA = []
self.normB = []
self.gammaA = []
self.gammaB = []
self.betaA = []
self.betaB = []
self.sc = []
nfPrev = nf*16
nfNext = nf*16
for k in range(5):
self.convA.append(nn.Sequential(nn.Upsample(scale_factor=2),
spectral_norm(nn.Conv2d(nfPrev + 1, nfNext, 3, 1, 1, bias=False)),))
self.convB.append(spectral_norm(nn.Conv2d(nfNext, nfNext, 3, 1, 1, bias=True )))
self.normA.append(nn.InstanceNorm2d(nfPrev, affine=False))
self.normB.append(nn.InstanceNorm2d(nfNext, affine=False))
self.gammaA.append(nn.Conv2d(nc, nfPrev, 1, bias=True))
self.gammaB.append(nn.Conv2d(nc, nfNext, 1, bias=True))
self.betaA.append(nn.Conv2d(nc, nfPrev, 1, bias=True))
self.betaB.append(nn.Conv2d(nc, nfNext, 1, bias=True))
self.sc.append(nn.Sequential(nn.Upsample(scale_factor=2),
spectral_norm(nn.Conv2d(nfPrev, nfNext, 1, bias=True))))
nfPrev = nfNext
nfNext = nfNext // 2
self.convA = nn.ModuleList(self.convA)
self.convB = nn.ModuleList(self.convB)
self.normA = nn.ModuleList(self.normA)
self.normB = nn.ModuleList(self.normB)
self.gammaA =nn.ModuleList(self.gammaA)
self.gammaB =nn.ModuleList(self.gammaB)
self.betaA = nn.ModuleList(self.betaA)
self.betaB = nn.ModuleList(self.betaB)
self.sc = nn.ModuleList(self.sc)
self.normOut = nn.InstanceNorm2d(nf, affine=False)
self.gammaOut = nn.Conv2d(nc, nf, 1, bias=True)
self.betaOut = nn.Conv2d(nc, nf, 1, bias=True)
self.convOut = spectral_norm(nn.Conv2d(nf, nOut, 3, 1, 1))
self.convOut = spectral_norm(nn.Conv2d(nf + 1, nOut, 3, 1, 1))
##############################
def forward(self, m, z, c):
######### Upsample ###########
x = self.dense(z.view(z.size(0),z.size(1))).view(z.size(0), -1, 4, 4)
mask_ratio = m.size(-1) // 4
for k in range(5):
if k == 4:
x = self.selfAtt(x)
h = self.convA[k](torch.cat((F.relu(self.normA[k](x) * self.gammaA[k](c) + self.betaA[k](c)),
F.avg_pool2d(m, kernel_size=mask_ratio)), 1))
h = self.convB[k](F.relu(self.normB[k](h) * self.gammaB[k](c) + self.betaB[k](c)))
x = h + self.sc[k](x)
mask_ratio = mask_ratio // 2
x = self.convOut(torch.cat((F.relu(self.normOut(x) * self.gammaOut(c) + self.betaOut(c)),
m), 1))
x = torch.tanh(x)
return x * m
class _downConv(nn.Module):
def __init__(self, nIn=3, nf=128, spectralNorm=False):
super(_downConv, self).__init__()
self.mods = nn.Sequential(nn.ReflectionPad2d(3),
spectral_norm(nn.Conv2d(nIn, nf//4, 7, bias=False)) if spectralNorm else nn.Conv2d(nIn, nf//4, 7, bias=False),
nn.InstanceNorm2d(nf//4, affine=True),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf//4, nf//2, 3, 2, 1, bias=False)) if spectralNorm else nn.Conv2d(nf//4, nf//2, 3, 2, 1, bias=False),
nn.InstanceNorm2d(nf//2, affine=True),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf//2, nf, 3, 2, 1, bias=False)) if spectralNorm else nn.Conv2d(nf//2, nf, 3, 2, 1, bias=False),
nn.InstanceNorm2d(nf, affine=True),
nn.ReLU(),
)
def forward(self, x):
return self.mods(x)
class _resBloc(nn.Module):
def __init__(self, nf=128, spectralNorm=False):
super(_resBloc, self).__init__()
self.blocs = nn.Sequential(spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=False)) if spectralNorm else nn.Conv2d(nf, nf, 3, 1, 1, bias=False),
nn.InstanceNorm2d(nf, affine=True),
nn.ReLU(),
spectral_norm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True)) if spectralNorm else nn.Conv2d(nf, nf, 3, 1, 1, bias=True),
)
self.activationF = nn.Sequential(nn.InstanceNorm2d(nf, affine=True),
nn.ReLU(),
)
def forward(self, x):
return self.activationF(self.blocs(x) + x)
class _upConv(nn.Module):
def __init__(self, nOut=3, nf=128, spectralNorm=False):
super(_upConv, self).__init__()
self.mods = nn.Sequential(nn.Upsample(scale_factor=2, mode='nearest'),
spectral_norm(nn.Conv2d(nf, nf//2, 3, 1, 1, bias=False)) if spectralNorm else nn.Conv2d(nf, nf//2, 3, 1, 1, bias=False),
nn.InstanceNorm2d(nf//2, affine=True),
nn.ReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
spectral_norm(nn.Conv2d(nf//2, nf//4, 3, 1, 1, bias=False)) if spectralNorm else nn.Conv2d(nf//2, nf//4, 3, 1, 1, bias=False),
nn.InstanceNorm2d(nf//4, affine=True),
nn.ReLU(),
nn.ReflectionPad2d(3),
spectral_norm(nn.Conv2d(nf//4, nOut, 7, bias=True)) if spectralNorm else nn.Conv2d(nf//4, nOut, 7, bias=True),
)
def forward(self, x):
return self.mods(x)
class _netEncM(nn.Module):
def __init__(self, sizex=128, nIn=3, nMasks=2, nRes=5, nf=128, temperature=1):
super(_netEncM, self).__init__()
self.nMasks = nMasks
sizex = sizex // 4
self.cnn = nn.Sequential(*([_downConv(nIn, nf)] +
[_resBloc(nf=nf) for i in range(nRes)]))
self.psp = nn.ModuleList([nn.Sequential(nn.AvgPool2d(sizex),
nn.Conv2d(nf,1,1),
nn.Upsample(size=sizex, mode='bilinear')),
nn.Sequential(nn.AvgPool2d(sizex//2, sizex//2),
nn.Conv2d(nf,1,1),
nn.Upsample(size=sizex, mode='bilinear')),
nn.Sequential(nn.AvgPool2d(sizex//3, sizex//3),
nn.Conv2d(nf,1,1),
nn.Upsample(size=sizex, mode='bilinear')),
nn.Sequential(nn.AvgPool2d(sizex//6, sizex//6),
nn.Conv2d(nf,1,1),
nn.Upsample(size=sizex, mode='bilinear'))])
self.out = _upConv(1 if nMasks == 2 else nMasks, nf+4)
self.temperature = temperature
def forward(self, x):
f = self.cnn(x)
m = self.out(torch.cat([f] + [pnet(f) for pnet in self.psp], 1))
if self.nMasks == 2:
m = torch.sigmoid(m / self.temperature)
m = torch.cat((m, (1-m)), 1)
else:
m = F.softmax(m / self.temperature, dim=1)
return m
class _netGenX(nn.Module):
def __init__(self, sizex=128, nOut=3, nc=8, nf=64, nMasks=2, selfAtt=False):
super(_netGenX, self).__init__()
if sizex != 128:
raise NotImplementedError
self.net = nn.ModuleList([_resMaskedGenerator128(nf=nf, nOut=nOut, nc=nc, selfAtt=selfAtt) for k in range(nMasks)])
self.nMasks = nMasks
def forward(self, masks, c):
masks = masks.unsqueeze(2)
y = []
for k in range(self.nMasks):
y.append(self.net[k](masks[:,k], c[:,k], c[:,k]).unsqueeze(1))
return torch.cat(y,1)
class _netRecZ(nn.Module):
def __init__(self, sizex=128, nIn=3, nc=5, nf=64, nMasks=2):
super(_netRecZ, self).__init__()
if sizex == 128:
self.net = _resEncoder128(nIn=nIn, nf=nf, nOut=nc*nMasks)
elif sizex == 64:
self.net = _resEncoder64(nIn=nIn, nf=nf, nOut=nc*nMasks)
self.nc = nc
self.nMasks = nMasks
def forward(self, x):
c = self.net(x)
return c.view(c.size(0), self.nMasks, self.nc, 1 , 1)