-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprotvec.py
131 lines (113 loc) · 5.11 KB
/
protvec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pandas as pd
import numpy as np
from keras.preprocessing.sequence import skipgrams, pad_sequences, make_sampling_table
from keras.preprocessing.text import hashing_trick
from keras.layers import Embedding, Input, Reshape, Dense, merge
from keras.models import Sequential, Model
from sklearn.manifold import TSNE
from joblib import Parallel, delayed
import multiprocessing
import csv
#Load Ehsan Asgari's embeddings
#Source: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141287
#Embedding: https://github.com/ehsanasgari/Deep-Proteomics
ehsanEmbed = []
with open("protVec_100d_3grams.csv") as tsvfile:
tsvreader = csv.reader(tsvfile, delimiter="\t")
for line in tsvreader:
ehsanEmbed.append(line[0].split('\t'))
threemers = [vec[0] for vec in ehsanEmbed]
embeddingMat = [[float(n) for n in vec[1:]] for vec in ehsanEmbed]
threemersidx = {} #generate word to index translation dictionary. Use for kmersdict function arguments.
for i, kmer in enumerate(threemers):
threemersidx[kmer] = i
#Set parameters
vocabsize = len(threemersidx)
window_size = 25
num_cores = multiprocessing.cpu_count() #For parallel computing
# Convert sequences to three lists of non overlapping 3mers
def kmerlists(seq):
kmer0 = []
kmer1 = []
kmer2 = []
for i in range(0, len(seq) - 2, 3):
if len(seq[i:i + 3]) == 3:
kmer0.append(seq[i:i + 3])
i += 1
if len(seq[i:i + 3]) == 3:
kmer1.append(seq[i:i + 3])
i += 1
if len(seq[i:i + 3]) == 3:
kmer2.append(seq[i:i + 3])
return [kmer0, kmer1, kmer2]
# Same as kmerlists function but outputs an index number assigned to each kmer. Index number is from Asgari's embedding
def kmersindex(seqs, kmersdict):
kmers = []
for i in range(len(seqs)):
kmers.append(kmerlists(seqs[i]))
kmers = np.array(kmers).flatten().flatten(order='F')
kmersindex = []
for seq in kmers:
temp = []
for kmer in seq:
try:
temp.append(kmersdict[kmer])
except:
temp.append(kmersdict['<unk>'])
kmersindex.append(temp)
return kmersindex
sampling_table = make_sampling_table(vocabsize)
def generateskipgramshelper(kmersindicies):
couples, labels = skipgrams(kmersindicies, vocabsize, window_size=window_size, sampling_table=sampling_table)
if len(couples) == 0:
couples, labels = skipgrams(kmersindicies, vocabsize, window_size=window_size, sampling_table=sampling_table)
if len(couples) == 0:
couples, labels = skipgrams(kmersindicies, vocabsize, window_size=window_size, sampling_table=sampling_table)
else:
word_target, word_context = zip(*couples)
return word_target, word_context, labels
def generateskipgrams(seqs, kmersdict=threemersidx):
#Generate skipgrams for training keras embedding model with negative sampling technique
#ARGUMENTS:
# seqs: list, list of amino acid sequences
# kmersdict: dict to look up index of kmer on embedding, default: Asgari's embedding index
kmersidx = kmersindex(seqs, kmersdict)
return Parallel(n_jobs=num_cores)(delayed(generateskipgramshelper)(kmers) for kmers in kmersidx)
def protvec(kmersdict, seq, embeddingweights):
#Convert seq to three lists of kmers
kmerlist = kmerlists(seq)
kmerlist = [j for i in kmerlist for j in i]
#Convert center kmers to their vector representations
kmersvec = [0]*100
for kmer in kmerlist:
try:
kmersvec = np.add(kmersvec,embeddingweights[kmersdict[kmer]])
except:
kmersvec = np.add(kmersvec,embeddingweights[kmersdict['<unk>']])
return kmersvec
def formatprotvecs(protvecs):
protfeatures = []
for i in range(100):
protfeatures.append([vec[i] for vec in protvecs])
protfeatures = np.array(protfeatures).reshape(len(protvecs),len(protfeatures))
return protfeatures
def formatprotvecsnormalized(protvecs):
protfeatures = []
for i in range(100):
tempvec = [vec[i] for vec in protvecs]
mean = np.mean(tempvec)
var = np.var(tempvec)
protfeatures.append([(vec[i]-mean)/var for vec in protvecs])
protfeatures = np.array(protfeatures).reshape(len(protvecs),len(protfeatures))
return protfeatures
def sequences2protvecsCSV(filename, seqs, kmersdict=threemersidx, embeddingweights=embeddingMat):
#Convert a list of sequences to protvecs and save protvecs to a csv file
#ARGUMENTS;
#filename: string, name of csv file to save to, i.e. "sampleprotvecs.csv"
#seqs: list, list of amino acid sequences
#kmersdict: dict to look up index of kmer on embedding, default: Asgari's embedding index
#embeddingweights: 2D list or np.array, embedding vectors, default: Asgari's embedding vectors
swissprotvecs = Parallel(n_jobs=num_cores)(delayed(protvec)(kmersdict, seq, embeddingweights) for seq in seqs)
swissprotvecsdf = pd.DataFrame(formatprotvecs(swissprotvecs))
swissprotvecsdf.to_csv(filename, index=False)
return swissprotvecsdf