-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathchapter16.m
154 lines (120 loc) · 4.25 KB
/
chapter16.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
%% Analyzing Neural Time Series Data
% Matlab code for Chapter 16
% Mike X Cohen
%
% This code accompanies the book, titled "Analyzing Neural Time Series Data"
% (MIT Press). Using the code without following the book may lead to confusion,
% incorrect data analyses, and misinterpretations of results.
% Mike X Cohen assumes no responsibility for inappropriate or incorrect use of this code.
%% Figure 16.1
load sampleEEGdata
channel2plot = 'o1';
timewin = 400; % in ms
timewinidx = round(timewin/(1000/EEG.srate));
tapers = dpss(timewinidx,5); % this line will crash without matlab signal processing toolbox
% extract a bit of EEG data
d = detrend(squeeze(EEG.data(strcmpi(channel2plot,{EEG.chanlocs.labels}),200:200+timewinidx-1,10)));
% plot EEG data snippet
figure
subplot(5,2,1)
plot(d)
axis tight,axis off
% plot tapers
for i=1:5
subplot(5,2,(2*(i-1))+2)
plot(tapers(:,i))
axis tight,axis off
end
% plot taper.*data
figure
for i=1:5
subplot(5,2,(2*(i-1))+1)
plot(tapers(:,i).*d')
axis tight,axis off
end
% plot fft of taper.*data
f=zeros(5,timewinidx);
for i=1:5
subplot(5,2,(2*(i-1))+2)
f(i,:)=fft(tapers(:,i).*d');
plot(abs(f(i,1:timewinidx/2)).^2)
axis tight,axis off
end
figure
subplot(5,2,2)
plot(mean(abs(f(:,1:timewinidx/2)).^2,1))
axis tight, axis off
subplot(5,2,3)
hann = .5*(1-cos(2*pi*(1:timewinidx)/(timewinidx-1)));
plot(hann)
axis tight, axis off
subplot(525)
plot(hann.*d)
axis tight, axis off
subplot(526)
ff=fft(hann.*d);
plot(mean(abs(ff(1:timewinidx/2)).^2,1))
axis tight, axis off
%% Figure 16.2
channel2plot = 'p7';
frequency2plot = 15; % in Hz
timepoint2plot = 200; % ms
nw_product = 3; % determines the frequency smoothing, given a specified time window
times2save = -300:50:1000;
baseline_range = [-200 -00];
timewin = 400; % in ms
% convert time points to indices
times2saveidx = dsearchn(EEG.times',times2save');
timewinidx = round(timewin/(1000/EEG.srate));
% find baselinetimepoints
baseidx = zeros(size(baseline_range));
[~,baseidx(1)] = min(abs(times2save-baseline_range(1)));
[~,baseidx(2)] = min(abs(times2save-baseline_range(2)));
% note that the following line is equivalent to the previous three
%baseidx = dsearchn(times2save',baseline_range');
% define tapers
tapers = dpss(timewinidx,nw_product); % note that in practice, you'll want to set the temporal resolution to be a function of frequency
% define frequencies for FFT
f = linspace(0,EEG.srate/2,floor(timewinidx/2)+1);
% find logical channel index
chanidx = strcmpi(channel2plot,{EEG.chanlocs.labels});
% initialize output matrix
multitaper_tf = zeros(floor(timewinidx/2)+1,length(times2save));
% loop through time bins
for ti=1:length(times2saveidx)
% initialize power vector (over tapers)
taperpow = zeros(floor(timewinidx/2)+1,1);
% loop through tapers
for tapi = 1:size(tapers,2)-1
% window and taper data, and get power spectrum
data = bsxfun(@times,squeeze(EEG.data(chanidx,times2saveidx(ti)-floor(timewinidx/2)+1:times2saveidx(ti)+ceil(timewinidx/2),:)),tapers(:,tapi));
pow = fft(data,timewinidx)/timewinidx;
pow = pow(1:floor(timewinidx/2)+1,:);
taperpow = taperpow + mean(pow.*conj(pow),2);
end
% finally, get power from closest frequency
multitaper_tf(:,ti) = taperpow/tapi;
end
% db-correct
db_multitaper_tf = 10*log10( multitaper_tf ./ repmat(mean(multitaper_tf(:,baseidx(1):baseidx(2)),2),1,length(times2save)) );
% plot time courses at one frequency band
figure
subplot(121)
[junk,freq2plotidx]=min(abs(f-frequency2plot)); % can replace "junk" with "~"
plot(times2save,mean(log10(multitaper_tf(freq2plotidx-2:freq2plotidx+2,:)),1))
title([ 'Sensor ' channel2plot ', ' num2str(frequency2plot) ' Hz' ])
axis square
set(gca,'xlim',[times2save(1) times2save(end)])
subplot(122)
[junk,time2plotidx]=min(abs(times2save-timepoint2plot));
plot(f,log10(multitaper_tf(:,time2plotidx)))
title([ 'Sensor ' channel2plot ', ' num2str(timepoint2plot) ' ms' ])
axis square
set(gca,'xlim',[f(1) 40])
% plot full TF map
figure
contourf(times2save,f,db_multitaper_tf,40,'linecolor','none')
set(gca,'clim',[-2 2])
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
title([ 'Power via multitaper from channel ' channel2plot ])
%% end.