-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexample1_noR.m
185 lines (153 loc) · 6.06 KB
/
example1_noR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
function example1_noR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% minimize S(x) subject to Wx = x
% S is differentiable: S = 1/2||Mx-y||_2^2
% W is the given mixing matrix
% Reference: A Decentralized Proximal-Gradient Method with Network
% Independent Step-zsizes and Seperated Convergence Rates
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global n m p M y_ori lam
path(path, '.\fcns')
n = 40; % number of nodes
m = 60;
p = 50; % the dimension of x on each nodes
L = n;
per_set=[14,18]; % parameters control the connectivity of the network
for perr = per_set
per = perr/L;
resSubPath = ['per',num2str(perr),'overL_mu0_5'];
% may changed in the following function
min_mu = 0.5; % set the smallest strongly convex parameter mu in S
max_Lips = 1; % set the Lipschitz constant
W = generateW(L,per); % generate the network W
% generate the smooth function S
[M, x_ori, y_ori] = generateS(m, p, n,...
'withoutNonsmoothR',min_mu,max_Lips);
% find the smallest eigenvalue of W
[~, lambdan] = eigW(W); % find the smallest eigenvalue of W
% find the Lipschitz constants and the strongly convex parameters of
% S_i
[Lips,mus] = getBetaSmoothAlphaStrong;
max_Lips = max(Lips);
min_mu = min(mus);
% set parameters
iter = 2000; % the maximum number of iterations
tol = 1e-11; % tolerance, this controls |x-x_star|_F, not divided by |x_star|_F
x0 = zeros(n,p);% initial guess of the solution
x_star = x_ori; % true solution
% Set the parameter for the solver
paras.min_mu = min_mu;
paras.max_Lips = max_Lips;
paras.x_star = x_star;
paras.n = n; % the number of nodes
paras.p = p; % the dimension of x on each nodes
paras.iter = iter; % max iteration
paras.x0 = x0; % the initial x
paras.W = W; % the mixing matrix
paras.tol = tol; % tolerance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start using the NIDS class
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
obj = NIDS; % using the class PrimalDual
obj.getS = @(x) feval(@funS, x);
obj.getGradS = @(x) feval(@funGradS, x);
h = figure;
set(h, 'DefaultLineLineWidth', 4)
norm_x_star = norm(x_star, 'fro');
methods = {'NIDSS','NIDSS-F','EXTRA','DIGing-ATC'};
LineSpecs = {'-k','--k','-.b',':m'};
numMethods = length(methods);
outputs = cell(numMethods,1);
legend_lab = cell(numMethods,1);
% call methods
for i = 1:numMethods
paras.method = methods{i};
switch methods{i}
case {'DIGing-ATC'}
paras.alpha = cRate./max_Lips*ones(n,1);
paras.atc = 1;
outputs{i} = obj.minimize_DIGing(paras);
legend_lab{i} = 'DIGing-ATC';
case {'DIGing'}
paras.alpha = cRate./max_Lips*ones(n,1);
paras.atc = 0;
outputs{i} = obj.minimize_DIGing(paras);
case {'NIDSS-adaptive'}
cRate = 1; % rate of the step size < 2
alpha = cRate./Lips;
paras.alpha = alpha;
%
eye_L = eye(n);
I_W = eye_L-W;
[U,S,V] = svd(I_W);
a = diag(S);
inv_I_W = U*diag([a(1:end-1).^(-1);0])*V';
alpha2 = diag(sqrt(1./alpha));
eigs = eig(alpha2*inv_I_W*alpha2);
[~, indmin]=min(eigs);
ind = ones(size(eigs)); ind(indmin) = 0;
lambda_n_1 = min(eigs(logical(ind)));
c= lambda_n_1;
paras.c = c;
outputs{i} = obj.minimize(paras);
legend_lab{i} = 'NIDS-adaptive';
case {'NIDSS'}
cRate = 1; % rate of the step size < 2
alpha = cRate./max_Lips*ones(n,1);
c = 1/(1-lambdan)/max(alpha);
paras.alpha = alpha;
paras.c = c;
paras.forcetTildeW = 0;
outputs{i} = obj.minimize(paras);
legend_lab{i} = 'NIDS-$c={1/(\alpha(1-\lambda_n(\mathbf{W}))}$';
case {'NIDSS-F'}
cRate = 1; % rate of the step size < 2
alpha = cRate./max_Lips*ones(n,1);
paras.alpha = alpha;
paras.forcetTildeW = true;
paras.method = 'NIDSS';
outputs{i} = obj.minimize(paras);
legend_lab{i} = 'NIDS-$c={1/( 2\alpha)}$';
case {'EXTRA'}
cRate = 1;
paras.alpha = cRate./max_Lips*ones(n,1);
outputs{i} = obj.minimize(paras);
legend_lab{i} = ['EXTRA'];
otherwise
display('????')
end
end
for i = 1:numMethods
semilogy(outputs{i}.err/norm_x_star,LineSpecs{i});
hold on;
end
xlabel('number of iterations');
ylabel('$\frac{\left\Vert \mathbf{x}-\mathbf{x}^{*}\right\Vert}{\left\Vert \mathbf{x}^{*}\right\Vert}$','FontSize',20,'Interpreter','LaTex');
legend(legend_lab,'FontSize',10,'Interpreter','LaTex');
saveas(h,[resSubPath,'_compa3.fig']);
% xlim([0 80])
% close;
prob.M = M;
prob.x_ori = x_ori;
prob.y_ori = y_ori;
prob.lam = lam;
prob.W = W;
save([resSubPath,'_compa3_prob.mat'],'prob');
end
end
function a = funGradS(x)
global n p M y_ori
a = zeros(n, p);
for j = 1:n
a(j,:) = (M(:,:,j)' * (M(:,:,j) * (x(j,:))' - y_ori(:,j)))';
end
end
function a = funS(x)
global n M y_ori
a = 0;
for j = 1:n
a = a + 0.5 * sum((M(:,:,j) * (x(j,:))' - y_ori(:,j)).^2);
end
end