-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopticalFlow.py
95 lines (73 loc) · 3.17 KB
/
opticalFlow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/python
# 2.12 Lab 9 Optical Flow
# Jacob Guggenheim 2019
# Jerry Ng 2019, 2020
import numpy as np
import cv2 # OpenCV module
import time
import math
global firstTime, old_gray, p0, lk_params, mask, color
firstTime = True
old_gray = None
p0 = None
lk_params = None
mask = None
color = None
def main():
# some bad coding practice
global firstTime, old_gray, p0, lk_params, mask, color
# convert ROS image to opencv format
cap = cv2.VideoCapture(0)
while True:
ret, cv_image = cap.read()
# visualize it in a cv window
cv2.imshow("Original_Image", cv_image)
cv2.waitKey(3)
################ First time: establish good features to track ####################
if firstTime:
################ Some stuff for Lucas Kanade Optical Flow ####################
# params for ShiTomasi corner detection
# Change the qualityLevel and maxCorners in the following line of code to enable more/fewer corners
feature_params = dict( maxCorners = 25, qualityLevel = .7, minDistance = 3, blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Take first frame and find corners in it
old_frame = cv_image
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
color = np.random.randint(0,255,(100,3))
firstTime = False
else:
frame = cv_image
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
if p1 is not None and p0 is not None:
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
cv2.waitKey(3)
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
time.sleep(0.01)
else:
# Retake previous frame and find corners in it
old_frame = cv_image
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
color = np.random.randint(0,255,(100,3))
if __name__=='__main__':
main()